仅 ${ }^{\prime}{ }^{\prime}$

THE LIBRARY
OF
THE UNIVERSITY
OF CALIFORNIA
LOS ANGELES

GIFT OF

DEPARTMENT OF THE INTERIOR
 Franklin K. Lane, Secretary

United States Geological Survey George Otis Smith, Director

BULLETIN 612

GUIDEBOOK

OF THE

WESTERN UNITED STATES

Part b. THE 0VERLAND ROUTE

WITH A SIDE TRIP TO YELLOWSTONE PARK

BY

WILLIS T. LEE, RALPH W. STONE, HOYT S. GALE AND OTHERS

Reprinted with minor corrections

WASHINGTON GOVERNMENTPRINTINGOFFICE

ADDITIONAL COPIES
 of this publication may be procured from the superintendent of documents
 GOVERNMENT PRINTING OFFICE
 WASBINGTON, D. C.
 PAPER-BOUND COPIES, 50 CENTS EACH
 CLOTR-B OUND COPIES, 75 CENTS EACH

DEPARTMENT OF THE INTERIOR

Franklin K. Lane, Secretary

United States Geological Survey
 George Otis Smith, Director

Bulletin 612

GUIDEBOOK

OF THE

Western united states

Part b. THE 0VErLald RoUTE

WITH A SIDE TRIP TO YELLOWSTONE PARK

BY

WILLIS T. LEE, RALPH W. STONE, HOYT S. GALE AND OTHERS

Reprinted with minor corrections

WASHINGTON

Principal Divinions of Geologic Timea
[I glossary of geologic terms is given on pp. I $2-185 . \mid$

a The gonlogic record consists meinly of sedimentary beds-beds deposited in water. Over large areas long lurioks of uplift and erosion intervened between perionls of teposition. Every such interruption in deposit ion in any ares produces there what geologists ferm an meonformity. Many of the time divisions shown abou"are sparated by sueh unconformities - that is, the dividing lines in the table ropresent local or widncureat uplifts or depressions of the earth's sarfice.

6 Ejuch names omitted; in less common use than those given.

PREFACE

By George Otin Smith.

The United States of America comprise an area so vast in extent and so diverse in matural features as well as in characters due to human ageney that the American citizen who knows thoroughly his own country must have traveled widely and observed wisely. To "know America first" is a patriotic obligation, but to meet this obligation the railroad traveler needs to have his eyes directed toward the more important or essential things within his field of vision and then to have much that he sees explained by what is unseen in the swift passage of the train. Indeed, many things that attract his attention are inexplicable except as the story of the past is available to enable him to interpret the present. Herein lie the value and the charm of history, whether human or geologic.

The present stimulus given to travel in the home country will encourage many thousands of Americans to study geography at first hand. To make this study most profitahle the traveler needs a handbook that will answer the questions that come to his mind so readily along the way. Furthermore, the aim of such a guide should be to stimulate the ere in the selection of the essentials in the scene that so rapidly unfolds itself in the crossing of the continent. In reeognition of the opportunity afforded in 1915 to render service of this kind to an unusually large number of American citizens as well as to risitors from other countries, the United States Geological Surver has prepared a series of guidebooks ${ }^{1}$ covering four of the older railroad routes west of the Mississippi.

These books are educational in purpose, but the method adopted is to entertain the traveler by making more interesting what he sees from the car window. The plan of the series is to present authoritative information that may enable the reader to realize adequately the scenic and material resources of the region he is traversing, to comprehend correctly the basis of its development, and above all to

[^0]appreciate keenly the real value of the country he looks out upon, not as so many square miles of territory represented on the map in a railroad folder by meaningless spaces, hut rather as land-real estate, if you please-varying widely in present appearance because differing largely in its history and characterized by even greater rariation in values because possessing diversified natural resources. One region may be such as to afford a livelihood for only a pastoral people; another may present opportunity for intensive agriculture; still another may contain hidden stores of mineral wealth that may attract large industrial development; and taken together these varied resources afford the promise of long-continued prosperity for this or that State.

Items of interest in civic development or references to significant epochs in the record of discovery and settlement may be interspersed with explanations of mountain and valley or statements of geologie history. In a broad way, the story of the West is a unit, and every chapter should be told in order to meet fully the needs of the tourist who aims to understand all that he sees. To such a traveler-reader this series of guidebooks is addressed.

To this interpretation of our own country the United States Geological sursey brings the accumulated data of decades of pioneering investigation, and the present contribution is only one type of return to the publie which has supported this scientific work under the Federal Government.

In preparing the description of the country traversed by the Overland Route the geographic and geologic information already published as well as mupublished material in the possession of the Geological Surrey has been utilized, but to supplement this material Messrs. Lee, Stone, and Gale made a field examination of the entire route in 1914, Mr. Lee working between Omaha and Ogden, Mr. Stone hetween Ogden and Yellowstone, and Mr. Gale between Ogden and San Francisco. Information has been furnished by Profs. J. C. Merriam and G. H. Louderback, as well as by others to whom credit is given in the text. Cooperation has been rendered by the United States Reclamation Service and by bureans of the Department of Agriculture. Railroad oflicials and other citizens have also generously given their aid, and other members of the Survey have freely cooperated in the work.

For the purpose of furnishing the traveler with a graphic presentation of each part of his route, the accompanying maps, 29 sheets in all, have been prepared, with a degree of accuracy probably never before attained ill a guidebook, and their arrangement has been planned to meet the convenience of the reader. The special topographic: surveys necessary to complete these maps of the route were made by C. H. Birdseye and J. L. Lewis.

Guidebook of the Western United States.

PART B. THE OVERLAND ROUTE, WITH A SIDE TRIP TO YELLOWSTONE PARK.

By Whlas T. Lee, Ralpi W. Stone, Moyts. Gale, and others.

INTRODUCTION.

The westbound traveler over the Union Pacific Railroad will view in the course of his journey some of the most conspicuons geographic features of the North American Continent. These are shown in the accompanying illustration (Pl. I). The east end of the route lies in the broad, well-watered Mississippi Valley, where an abundance of rainfall is indicated by the numerous branching streams. On leaving Omaha the traveler crosses the Great Plains, which rise gradually to the west and become progressively drier, merging into the relatively barren region formerly called the Great American Desert. This change in character is not very apparent to the traveler, because the railroad follows a valley whose bottom lands in the arid part of the Great Plains are irrigated and do not differ in general appearance from those farther east, where the rainfall supplies sufficient moisture for growing crops. On both sides of this valley in western Nebraska the land is utilized for grazing and for dry farming. The cultivation of the Great Plains by dry farming is rapidly spreading as new methods become more widely understood, and the region can no longer be called a desert. In eastern Wyoming the route is in a belt of grazing country.

West of the Great Plains lies a general mountainous country, known as the Cordilleran region, which extends westward to the Pacific coast. At Granite Canyon, Wyo., the railroad reaches the eastern margin of the Cordilleran region, marked by a spur of the southern Rocky Momenains-the Laramie Range-and thence westward it winds around detached mountain groups and through the intervening basins. The traveler may not realize that he is in a mountainous region, for most of the lofty mountains of southern Wyoming stand at considerable distances from the railroad. The mountainous part of the route is not well populated. Many of the stations are little more than section houses, and some consist only of a post on which is painted the name, to indiate the location of a sidetrack. This
part of Wyoming is used mainly for stock raising, but in the irrigated ralleys firther west, in Utah, there are orchards and well-tilled fields.

Soon after entering Ctah the traveler crosses the Wasatch Mountains, one of the great ranges of the continent, through the canyon cut by Weber River, and then enters the valley of Great Salt Lake.

Leaving Ogden on the westward journey the traveler is fairly within the Great Basin, one of the major matural divisions or physiographic prowinces of the Lnited States, and he will he passing through it for more than 16 hours. The Great Basin is called a desert and as a whole gives an impression of dreariness and desolation, but it has a peculiar interest not possessed by any other part of the transcontinental route. It is one of the most productive mining regions of the world. That it is not all a desert is shown by the fact that large numbers of cat the and sheep are raised within its limits. It is developing, moreover, to an increasing extent in agriculture.

Beyond the Great Basin lies the Siema Nevada, which on this route marks approximately the boundary between Nevada and California. Through the forest zone of the Sierra the traveler descends into the Great Valley of Galifornia and, crossing its broad plains, passes, by Way of the one tidal outlet through the Coast Ranges, to the metropolis of the Pacific coast.

Notr.-For the convenience of the traveler the sheets of the ronte map in this bulletin are so arranged that he can unfold them one by one and keep each one in view while he is realing the text relating to it. A reference is made in the text to each matl, at the place where it shomld be so unfolded. The areas covered by these sheets are indicated on Plate I, and a list of the sheets and the other illustrations is given on payes 227-240. A glossary of geologic terms is given on pages 232-236, and an index of stations on pages $241-244$.

TATES

RELIEF MAP SHOWING SURFACE FEA TURES GF THE WESTERN PART OF THE UNITED YRATES

ITINERARY.

COUNCIL BLUFFS, IOWA, TO OGDEN, UTAH.

Abraham Lincoln established the castern terminus ${ }^{1}$ of the Union Pacific Raitroad on the cast side of Missouri River, so that the Overland Route begins at Council Bluffs, Iowa (see sheet $1, p, 15$), atthough the oflices, shops, and

Council Bluffs, Iowa.

Elevation 980 feet. Population 29,292. general terminal facilities of the road are west of the river, at Omaha. Commeil Bluffs is on the broad flood plain of Missouri River, at the foot of high blufls

Abstract

${ }^{1}$ President Lincoln's Executive order of November 17, 1863, and a supplemental order of March 7 , 1864, were issued under the law of July 1, 1862, Which created the Union Pacific Railroad Co. and which anthorized the President of the United States to establish its eastern terminus on the western boundary of Iowa. This required the company to provide for the difficult crossing of Missouri River.

The passage of this law anthorizing the building of a road to the Pacinc coast was preceded by a long debate. The northwestern region acquired by the Lonisiana purchase of 1803 had been explored by Lewis and Clark, whose expeditionstarted in 1804. Their report aroused great interest and stimulaied many military, trading, and exploring expeditions, but there was great opposition to the holding of the "western wilderness" in the Union. This was voiced in 1825 by Semator Dickerson, of New Jersey, who said, in debate: "But is this Territory of Oregon ever to become a State, a member of this Union? Never. * * * The distance * * * that a Member of Congress of this State of Oregon would be obliged to travel in coming to the seat of government and returning home would be 9,300 miles. * * * If he should travel at the rate of 30 miles per day, it would require 306 days. Allow for Sundays, 44, it would amount to 350 days. This would allow the Member a fortnight to rest himself at Washington before he should commence his journey home. This traveling would the hard, as a greater part of the way is excecdingly bad, and a portion of it over rugged mountains, where Lewis and ('lark found several feet of snow in the latter part of June. Yet a young, able-bodied Senator might travel from Oregon to Washington and back once a year; but he could do notling else. It would be more expeditious, however, to come by water round Cape Horn, or to pass through Bering Strait, round the north coast of this continent to Baffin Bay, thence through Davis Strait to the Atlantic, and so on to Washington. It is true, this passage is not yet discovered, except upon our maps, but it will be as som as Oregon shall be a State."

But when California was aequired by the United States, and especially after the discovery of gold, the Pacific coast became of great importance to the citizens of the East, and routes leading to it were carried across what had been a trackless wilderness. The west ern migration, which received its greatest impetus in the gold rush of 1849 , developed some famous trails, one of which, the "Overland Trail," was the forermmer of the Union Pacific and central Pacific railroads. The convincing argmments in favor of its construction seem to have been military and political rather than commercial. President Lincoln adrocated it not only as a military necessity but also as a means of keeping the Parific coast in the Union. The name Union Pacific probably resulted from the belief that the road would bind the Union together.

composed mainly of a claylike material known as loess. According to tradition these bluffs were used for centuries by the Indians as a common meeting ground; here the several tribes held their powwows, smoked their pipes of peace, or declared hostilities, as their inclinations moved them. The name Council Bluffs was originally applied to a locality about 20 miles north of Omaha, where Lewis and Clark held council with the Indians. Later it was transferred to the site of the present city.

The loess ${ }^{1}$ north of Council Bluffis lies above loose sand and gravel known as the Aftonian gravels (fig. 1). The outcrop of these gravels is marked by a line of springs, for the underground water passes through them more readily than it passes through the less porous ma-

Figure 1.-Sketch profile of river bluffs near Omaha, Nebr., showing the Aftonian gravels lying between 1 wo beds of glacial till and covered with thick deposits of loess.
terial above and below. From these gravels in some parts of Iowa have been collected the bones of mastodons, camcls, and many other animals no longer found in North America. ${ }^{2}$ (See Pl. II, p. 10.)

[^1]The Aftonian gravels separate two glacial deposits known as till, consisting of sandy clay in which are fragments of rock ranging from grains of sand to bowders 2 feet or more in diameter. These fragments are of limestone, samdstone, quart\%, and other rocks, but the largest and most conspicuons are of quartzite and granite, including
arctic species followed the retreating ice front northward, and their phace was taken ly animals adapted to life in a temperate climate.
One of the effects of the climatio changes and the resulting migration of amimats was a radical change of famaa. Could one of the Pleistocene men return and view the present-day animals they would seem as strange to him as those of an African jungle are to an inhabitant of the Great Plains. Prof. W. B. Scott, in his history of land mammals, says of the Pleistocene fama:
"It is probable that the Pleistocene fossils already obtained give us a fairly adequate conception of the larger and more conspicuous mammals of the time but no donbt represent very incompletely the small and fragile forms. Wiih all its gaps, however, the record is very impressive. * * * The fossils have been gathered over a very large area, extending from ocean to ocean and from Alaska to Central America. Thus their wide geographical range represents nearly all parts of the continent and gives us information concerning the mammals of the forests as well as of the plains.
"Those divisions of the early and middle Pleistocene which enjoyed mitder climatic conditions had an assemblage of mammals, which from one point of view seems very modern, for most of the gencra and even many of the species which now inhabit North America date back to that time. From the geographical standpoint, however, this is a very strange fama, for it contains so many animals now utterly foreign to North America, to find near relatives of which we should have to go to Asia or South America. Some of these animals which now seem so exotic, such as the llamas, camels, and horses, were yet truly indigenous and were derived from a long line of ancestors which dwelt in this continent but are now scattered abroad
and are extinct in their original home, while others were migrants that for some maknown reason failed to maintain themselves. Others again are everywhere extinct.
"Most surprising, perhaps, in a North American landseape is the presence of the Proboscidea, of which two very distinct kinds, the mastodons and the true elephants, are found together. Orer nearly the whole of the United States and southem Canada, and even with sporadic ocenrrence in Alaska, ranged the American mastodon (Mastodon americamus), which was rare in the plains but very abundant in the forested regions, where it persisted till a very late period and was probably known to the early Indians. This animal, while nearly related to the irue elephants, was yet quite different from them in appearance. * * * The tusks were elephant-like, except that in the male there was a single small tusk in the lower jaw, which can not have been visible extermally; this is a remnant of an earlier stage of development, when there were two large tusks in the lower as well as the upper jaw. The creature was covered with long, coarse dun-colored hair; such hair has been found with some of the skeletons.
"Of true elephants, the North American Pleistocene had three speries. Most interesting of these is the northern or Siberian mammoth (Elephas primigenius), a late immigrant from northern Asia, which came in by way of Alaska, where Bering Land (as we may call the mised bed of Bering Sea) connected it with Asia. The mammoth was abundant in Alaska, British columbia, and all across the northern United States to the Atlantic coast. Hardly any fossil mammal is so well known as this, for the carcasses entombed in the frozen gravels of northern Siberia have preserved every detail of structure. It is thas definitely known
blocks of a pink rock known as Sieux quartzite, because the rock mats from which they came is exposed near Sioux Falls, S. Dak. Many of the granite bowhers were carried by the glaciers hundreds of miles, for the nearest native rock of this kind occurs far to the north. (For description of glacial deposits see note on pp. 21-23.)
that the mammoth was well adapted to a cold dimate and was eovered with a dense coat of wowl heneath atn onter coating of fong, coarse hair, while the contents of the stomath and the partly masticated foot fomme in the month showed that the animall hed umon the same regetation that owrurs in mothern Siberia to-day. * * * This is the smallest of the three Pleistoceme speries-9 feet [high] at the shoulder. The mammoth was not peenliar to Siburia and North America, but extended alsu into Eurepe, where it was familiar to palenlithic man, as is attested by the ppitited and lifelike carvings and cave paintings of that date. Thus, during some part of the Pleistorene, this species ranged armme the entire northern hemisphere."
Two notable contemporaries of the mammoth were the Cohumbian elephant, Elt pherscolumbi[[PI. II, B], which attainet a haight of about 11 feet, the size of the lavgest Airican elephants, and the imperial emphant, Elephas imperotor, the larges of the Amerisan forms, which attained a herght of 13 fert 6 inches.
"This ereat creature the imperial elephant | was characterized not only by its emomous stature but also by the proportionately wry large size of its grinding teeth and was a sumivor from the preceding Plionene eporh; it is not known to have passed beyome the middle Pleisto(who and was thus the first of the species to breme extinet. In geographial range the imperial elephant was a western form, watuling from the Pacitic coast almost to the Mississippi River, east of which it hat never been fomel, and from Nebracka semthward to the "ity of Mexico. The meanime of this elistribution is probahly that this rhphant shmmed the forestos and was espectially adapted to a lifeom thr"pronplains. * * *
"Sany hofed animals, far more than m, imha!,it Nowth America, are fonnd
in this Pleistocene fama. The Perissodactyla were represented by horses and tapirs, but not by rhinoceroses; it might seem superfluous to say that there were not rhinoreroses, but, as a matter of fact, that family lad a long and varied American history and became extinct only during or at the end of the Pliocene epoch. The horses were extremely numerous, hoth individually and sperifically, and ranged, apparently in great herds, all over Mexico and the United States and even into Alaska. All the known species (at least 10 in number) belong to the genus Equis, but the true horse (Eques caballus) to which all the domestic breeds are referred, is not represented. The smallest known member of the genus is the pygmy Equus tau, of Mexico. [These ranged in size from ponies as large as a Shetland to horses that exceeded in size the heaviest modern draft horses.] * * * The Great Plains must have been fairly covered with enormous herds of horses, the countless bones and teeth of which, entombed in the Sheridan formation, have given to it the name of 'Equus beels.' * * *
"To one who knows nothing of the geological history of North America it would he natural to suppose that the Pleistocene horses must have been immigrants from the Old W world which failed to establish themselves permanently here, since they completely disappeared before the discovery of the continent by Europeans. This would, however, be a mistaken inference, for North America was for long ages the chicl area of development of the equine family, which may here be traced in almost mbroken continuity from the lower Eorene to the Pliocene. On the other hand, it is quite possible that some of the speries were immigrants."

Tapirs, which are now confined to southem Asia, Central America, and South Ameri"a, wereabundant cast of the Mississippi but are not known west of that river.

. 1 .

(.

I).

E.

ANIMALS THAT LIVED IN CENTRAL NORTH AMERICA DURING PLIOCENE AND PLEISTOCENE TIME.

A. SABER-TOOTHED TIGER ANO GIANT WOLVES ON THE CARCASS OF A PLEISTOCENE ELEPHANT; B, PLEISTOCENE ELEPHANTS (ELEPHAS COLUMBI), MUCH LARGER THAN THE MODERN ELEPHANTS; G^{\prime}, GLYPTODONTS, PLEISTOCENE ARMADILLO-LIKE ANIMALS (SOUTH AMERICAN FORMS); I, PLEISTOCENE MUSK OX, AN ANIMAL AS BIG AS A SMALL COW; E, PLIOCENE HORNED GOPHERS, ANIMALS ABOUT THE SIZE OF WOODCHUCKS.

1. FIFTY YEARS AGO.

I. NOW COVERED WITH CORN.

C. WHEN BUFFALO ROAMED OVER THEM.

1). SUPPORTING HERDS OF DOMESTIC CATTLE.

THE PLAINS OF NEBRASKA.
Pnotographs furnished by Union Pacific Railroad Co.

On leaving Conncil Blufls the train gradually rises on a filled incline, about 2 miles long, to the bridge, which is about 60 feet above the ordinary water level of Missouri River. Missouri River. From this indine a good view may be obtained of the broad flood phan over which the river winds in a constantly changing course and upon which at times of flood it deposits the rich loam gathered from the vast areas it drains. The productive fiekds that present so pleasing an aspect during the growing season and give the appearance of opulence at harvest time are the direct result of this constant activity of the river. But neither these fields nor anything else on the bottom lands can be regarded as permanent, for the great river is continally eating away the plain in some places and building it up in others. This action causes the stream to assume a winding course - that is, to meander in loops and bends that are called oxbows. In this process of shifting its course, when these bends become very sharp the river tends to straighten itself by cutting across the narrow necks, and it thus abandons parts

Wild hogs, camele, and llamas were abundant. The hoofed animals, such as deer and bison, were numerous, and also the carninvores or flesh eaters. Conspicuous among these were the eaber-toothed tigers (see Pl. II, A), which were contemporaneous with primitive man and doubtless were lis formidable enemies. They have appealed so strongly to the imagination and lave been refered to so often in literature that they are among the best known of the extinct animals.
The Pleistocene fama was not without its grotesque features. Among the most curious animals of the time may be mentioned the ground sloths and the giant armadillos (PI. II, C), of which Prof. Scott says:
"The ground sloths were great, unwieldy herbivorous animals covered with long lair, and in one family there was a close-set armor of pebble-like ossicles in the skin, not visible externally. They walked upon the outer edges of the feet, somewhat as the ant hear uses his fore paws, and must have been very slow moving creatures. Their enormous claws may have served partly as weapons of defense and were doubtless used also to drag down branches of trees and to dig roots and tubers. Apparently, the latest of these curious animals to survive was the very large Megalonyx, which it is
interesting to note was first disocovered and named by Thomas Jefferson. The animals of this genus were very abundant in the forests east of the Mississippi River and on the Pacitic coast, but much less rommon in the plains region, where they would seem to have been confined to the woorled river valleys. The still more gigantic Megatherium, which had a body as lage as that of an dephant and murlh shorter though more massive legs, was a southern animal and has not been found above South Carolina. Mylodon, smaller and lighter than the preceding genera, would seem to havo entered the continent earlie: and to have jecome extinct sooner. It ranged across the continent but was muth commoner in the plains region and less so in the forested areas than Megalonyx, being no doul,t better adapted to subsisting upon the vegetation of the plains and less dependent upon trees for food.
"The glyptodonts [armadillos, see Pl. II, C] were undoubtedly present in the North American Pleistocene, but the remnants which have been collected so far are very fragmentary and quite insufficient to give us a definite ronception of the number and variety of them." Ther: were abundant, however, in the South American Pleistocene and hence are well knowu.
of its former chamel, which become bayous, or oxbow lakes. Cutoff Lake, which can be seen to the right, ${ }^{3} 3$ miles north of the bridge, is one of these abandoned oxbows. At the time the river was agreed upen as the boundary between Iowa and Nebraska Cutoff Lake was a part of its chamel, but in 1870 it straightened its course, so that the land partly inclosed by Cutoff Lake, although a part of Iowa, now lies west of the river and is almost surrounded by territory belonging to the State of Nebraska. This shifting of the river's course can be prevented to some extent by building levees, or embankments. North of Council Bluffs an embankment has been thrown up and faced with a hard quartz rock (Sioux quartzite) which was shipped for this purpose from Sioux Falls, S. Dak., 160 miles away. The necessity for this protection is obvious, for some of the lowland near Council Bluff's lies below river level.
The building of the bridge ${ }^{2}$ was regarded as a notable feat of engineering, and its present importance is indicated by the fact that the traffie of seven railroads passes over it. It spans one of the longest rivers in the world, the Missouri and Mississippi combined, 3,820 miles long. The bridge crosses this great river 669 miles above the junction with the Mississippi, and the drainage from 323,000 square miles, imcluding large parts of Montana, North Dakota, and South Dakota, passes under it. The water surface has a known range of level of 25 feet at this point: the lowest water recorded was in 1867 , and the highest in 1881. The discharge at Omaha arerages about 50,000 second-feet; that is to say, on the average, 50,000 cubic feet $(374,000$ gallons: of water passes under the bridge every second.
${ }^{1}$ The terms right and left as employed throughout this book apply to the westtrond journey
${ }^{2}$ The first bridge built at Council Bluffs was becoun by the railroad company in 1869 and completed in 1872 at a cost of $\$ 1,7 \pi 0,000$. It carried a single track, consisted of 11 spans, each 250 feet long, and was atwout (i0) feet above ordinary flood lacel, or 50 feet above the highest recorded level. This height served two useful purposes-it brought the track to the lacel of the bluffs west of the river and allowed boats which were formerly used on the river to pass under it, thus obviating the necessity of a drawbridge. The two castmons of on this bridge were wrecked by a tornado in 1877, but the bridg? was used with temporary repairs until 1886, when it was replaced by the present double-track structure.

The river here during low water is about 900 feet wide. The bridge over the main channel rests on five piers, 250 feet apart, that extend to bedrock at a maximum depth of 76 feet below the level of the flood plain. These were built midway between those of the old bridge. (See diagram on sheet 1, p. 18.) They carry the four main spans, and on each end are three additional deck spans, making the total length of the bridge 1,750 feet. Although the records give no intimation of the kind of rock on which the piers rest, it is supposed to consist of limestone and sandstone of Carboniferous (Pennsylvanian) age, which are known from well borings to underlie the glacial drift in the vicinity of Omaha. These rocks are exposed in the river bluffs near South Omaha but can not be seen from the train.

Although designed to accommodate foot passengers and wagons, the bridge has never been so used. Local traffice passes ower the bridge of the Omatha \& Council Bluffs Street Railway ('o., half a mile farther north, and beyond this is a drawhidge of the Omaha Bridge \& Terminal Co., orer which pass the trains of the Illinois Central Railroad.

The Missouri is the muddiest river in the Mississippi Vatley; it carries more silt than my other large river in the United States except possibly the Rio Grande and the Colorado. For every square mile of combtry drained it carries downstream 381 tons of dissolved and suspended matter cach year. In other words, the river gathers amnally from the country that it drains more than $123,000,000$ tons of silt and soluble matter, some of which it distributes over the flood plains below to form productive agricultural lands but most of which finds its way at last to the Gulf of Mexico.

It is by means of data of this kind that geologists compute the rate at which the lands are being eroded away. It has been shown that Missouri River is lowering the surface of the land drained by it at the rate of 1 foot in 6,036 years. The surface of the United States as a whole is now heing worn down at the rate of 1 foot in 9,120 years. It has been estimated that if this erosive action of the streams of the United States could have been concentrated on the Isthmus of Panama it would have dug in 73 days the canal which has just been completed, after 10 years' work, with the most powerful appliances yet devised by man.

Nebraska lies mainly in the Great Plains province of the western United States, in altitudes ranging from 842 to 4,849 feet above sea level, and is drained to the Missouri through the

Nebraska.

 Niobrara, the Platte, and many minor streams. The amnual rainfall in the State ranges from 13.30 to 31.65 inches and averages 23.84 inches. Dry farming is general and large crops of corn, wheat, and oats are raised. Nebraska claims a greater variety of native grasses than any other State in the Union, their number amounting to more than 200 , of which 150 are valuable for forage. In the western part of the State some irrigation is practiced.Nebraska is primarily an agricultural State and has been called "a State without a mine," but it does contribute to the country's mineral production by some utilization of its clay resources, by a considerable output of sand, gravel, and building stone, and by a practical monopoly of the country's production of volcanic ash, or pumice. The packing industry is large.

The State includes 77,520 square miles and in 1910 had a population of $1,192,214$.

The name ()matha is derived from that of a tribe of ludians that once imhabited this region. The first white settlement was made in 1854 , but not until railroad construction began, about
Omala, Nebr.
Elevation, 1,024 feet. Population, 124, (\%) 1 10 years later, did it become a town of importance. Here ground was broken December 1, 1863, for the construction of the road, although little real construction work was done before the spring of 1865 ; here the first transcontincntal train started for San Francisco on September 13, 1870; here occurred on November 1, 1897, "the world's greatest auction," when the Linion Pacifie, which had cost $\$ 115,214,587.79$ to construct, Was sold for $\$ 57,564,932.76$; and here are situated the offices, shops, and general terminal facilities of the Union Pacific system.

The station at Omaha is built in a depression croded in loess (see p. s), and good exposures of this peculiar material may be seen on the left as the train leares the station. Thence westward to Elkhorn it lies on either side of the track, through the entire length of the Lane cut-off, which

Figure 2.-Sketch profile showing relation of loess to underlying beds of clay and glacial till in railroad cuts west of Omaha, Nebr. is one of the notable engineering features on the Union Pacific route. Prior to 1908 the trains passed through South Omaha and thence up Papillion Creek to Elkhorn. To aroid this circuitous route a line was built nearly due west from Omaha, cutting to a maximum depth of 85 feet straight through the numerous hills and building across the broad valleys, making, at a cost of $\$ 3,000,000$, a level roadbed nearly 12 miles long, which shortened the line by about 9 miles. ${ }^{3}$

The city of Omaha is built on loess, and wherever grading has been done or exavations have been made the characteristic steep walls of this material may be secn. The loess is fine grained, massive, and compact and carrics mumerous small light-colored limy concretions.

[^2]prart of the bank in each cut consists of butf-colored loess 30 to 50 feet thick and is rather sharply separated from the lower jart, which ronsists of brick-red clay. A somewhat singular relation may be observed in these cuts. The red material is exposed only in the center of each cut, and its surface in cross section has practically the same outline as the surface at the top. (See fig. 2.) The overlying loess is of nearly the same thickness in all places, as if it were a uniform blanket spread over an older surface that had the same shape as the present surface.

Nearly vertical walls of it have stood practically unchanged for 30 years, and other equally precipitous walls have the appearance of being much older.

The blanket of glacial debris and loess (see fige. 2̈) overlies limestone and sandstone of Carboniferous age, which have been pered rated by

${ }^{1}$ The only Paleozoic rocks which come to the surface in casteru Noloraka belong to the Carboniferous system, daposited at a time when most of the coal beds in the eastem part of the United States were in procoss of formation from vegetal deposits. (For ty]es of Carboniferous veretationsen		Pl. IV, (', p. 20.) They are exommially the most important ronks in the State. Nost of the building stome, clay, and lime proxheed in Nehraska come from them. Their relations to other rock formations exposed in eastern NeJoraska are shown in the following table:
Gcologic columen showing relations of rorks aposed in castern Mibraskiv.		
Age.	Formation.	Character.
Quaternary	Loess.	
	Kansau driit.	Gilacial till.
	Aftomian gravels.	Sind and gravel; locally eonglomerate.
	Pre-Kansan or Nobraskan drift.	Glarial till.
Tertiary	Niobrara limestone.	Sand and clay.
Cretaceous.		Thalky limestone aurl shale.
	Benton shale.	Bhe shate with limestone concretions. . (C'arlile shale.)
		Hard slaty limestone and hhe chalky (lay. (Greenhom limestone.)
		Dark sumb shale. (Graneros shale.)
	Dakota sandstone.	Suft massive yellow sudstone.
Carboniferous.		Limestone, sandstone, and shale of Permian and Pennsylvanian age.

${ }^{1}$ The only Paleozoic rocks which comer to the surface in easteru Nebraska bebong to the (arbonifurous system, depositod at a time when most of the eoal beds in tha eastem prart of the United States were iu process of formation from vegetal deposits. (For ty]es of carboniferous vegretalion sed

Pl. IV, (', p. 20.) They are exotominally the most important rowks in the State. Most of the building stome, rlay, and lime proxheed in Nobraska come from them. 'Fheir relations to other rock formations exposed in eastem NeJoraska are shown in the following table:

Gcologic columen showing relations of rorks reposed in enstern Nibraster.

In eastern Nelraska the C'arboniferous beds that appear at the surface comprise 200 feet of Permian and 1,200 feet of Pennsylvanian rocks. The lowest series of the Carboniferous, the Mississippian, does not outcrop here. The Pennsylvanian rocks consist of alternating limestones and shales. The rock formations below the

Pennsylvanian in castern Nebraska are of interest becanse they include certain strata that supply water to artesian wells. Scveral of these wells drilled in and near Omaha found water at depths of 1,200 to 1,800 feet under pressure sufficient to flow at the surface. The lowest stratum yields the strongest flow.
numerous wells bored for artesian water, but which can not be seen from the train. The Carboniferous period was so named because in many parts of the world its rocks contain an abundance of carbon in the form of coal. In the central and eastern parts of the United States much coal is interlayered with rocks of this age, but only one coal bed has been found in the Carboniferous rocks of Nebraska, and that one is not of much ceonomic value under present conditions. Attempts to mine it have not proved successful.

Elkhorn is the first station west of the Lane cut-off and is located on one of the branches of Papillion Creek. East of

Elkhorn.

Eleration 1,164 feet. Population 291. Omaha 28 miles. this station the railroad crosses the eastern margin of the widespread Dakota sandstone, but the rock is so completely covered by glacial drift and loess that in no place can it be seen from the train and, indeed, its exact position is not known.

Figure 3.-Cross section of the rock formations from the Rocky Mountains to Onaha, Nebr., showing how some of the older rocks that crop out near Omaha extend westward underneath the younger formations and crop out again in the mountains, where all the stratified rocks have been upturned and eroded. (After N. H1. Darton.)

At Waterloo the railroad crosses Elkhorn River, which, unlike most other streams, does not here flow in a valley of its own

Waterloo.
Elevation 1,124 feet. Population 402. Omaha 31 miles. making but for 25 miles or more meanders over the bottom lands of the Platte.

Between Elkhorn and Waterloo great differences are noticeable both in the character of the surface and in the soit. To the east the surface is diversified by low rolling hills and broad shallow valleys completely mantled with loess. The loess forms a fairly good soil, but its inferiority to the dark-colored loam of the bottom lands is obvious to the most casual observer of the regetation. West of the hills, in Platte Valley, the surface is flat and unbroken and the soil is more productive. (See Pl. III, p. 11.)

Valtey is the center of an agricultural district in the rich bottom lands of Platte Valley. Large quantities of garden

Valley.
Elevation 1,1:39 feet. Population 810 . Omaha : 3 miles. secds are grown here. About 3 miles west of Valley the traveler will obtain his first good view of Platte River. The railroad follows this river as far upstream as Julesburg, in northeastern Colorado, a distance of about 350 miles.

Although Fremont, the seat of Dodge County, is on the flood phain of Plate Valley, where few exposures of rock can be seen, it stands near the conatact of the Dakota sandstone and the overlying Benton shate, a fact determined by observations made both north and south of the ralley. The samdstone ${ }^{1}$ may be seen in the blutls at the someth end of the wagon bridge south of the city, but the

Fremont.

Elevation 1,196 feet. Population 8,7Is. Omaha 46 miles. shale is not exposed. These bluffs consist mainly of glacial till mantled by loess.

Fremont is on the main line of the old trail from Missouri River tw California and Oregon, which before the Union Pacific was built was known as the Overland Trail. ${ }^{2}$ In front of the station stands a rought-

Abstract

${ }^{1}$ The rocks in eastern Nebraska referred to the Dakota or basal sandstone of the Upper Cretaceous series are about 300 feet thick and consist of sand with clay and local beds of conglomerate. The sandstone was named for Dakota ('iiy. S. Dak., where collections were made of fossil plants that were described by Profs. Ileer and Lesquereux and later became known as the characteristic Dakota flora, for many years the oldest deciduous-leaved flora known in North America. This flora comprises large and well-preserved leaves of poplars, willows, oaks, alders, birches, beeches, sycamores, persimmons, tulip trees, magnolias, and sassafras and shows that many of the familiar and still dominant types of plants had already been firmly established at this remote time. However, none of the particular species of Dakota plants here discovered are known to have survived in this region beyond the close of the Dakota epoch.

The Dakota is exposed in places in the bluffs of Platie River from Fremont to Plattsmouth. It is one of the greatest water-bearing formations in America. It rises gently toward the west, although covered by younger rocks, and crops out again in the foothills of the Pocky Mountains (see fig. 3), where the surface waters enter it. These waters slowly percolate through its sands for about 450 miles to supply the numerous wells in the Platte Valley and elsewhere. The Dakota sandstone extends 400 miles or more north of the Union Pacific Railroad and an equal distance to the south and underlies the

surface of the country from the Pork! Mountains eastward to a maximum distance of 1,000 miles or more. It furnishes excellent water to the citizens of 11 States.
${ }^{2}$ Although four transcontinental railroad routes were surveyed by the Goverilment, the results being published in 1 l large volumes, the first line built, the Union Pacific, was explored and located by private enterprise. The Overland Trail seemed to offer the best advantages for railroad construction, inasmuch as it utilized the most feasible passage over the mountains. Gen. Grenville M. Modge. the chief engineer of the Union Pacific during the period of construction, says of it: "This route was made by the buffalo, next used by the lndians, then by the iur traders, next by the Mormons, and then by the overland immigrants to California and Oregon. It was known as the great Platte Valley route. On this trail. or close to it, were built the Union and Central Pacific railroads to California and the Oregon Short Line branch of the Union Pacific to Oregon." Its history as a definite route seems to have begun in 1804 , when Lewis and Clark visited and described the locality that hecame its eastern terminus. A fur-trading company sent out by John Jacob Astor in 1810. which founded Astoria, Oreg., at the mouth of Columbia River, the following year, returned by a route which had never before been traversed, but which coresponded essentially with that later known as the Oregon Trail. Astor had planned
hewn monument of red granite with the inscription: "This boulder marks the overland emigrant trails through Fremont to Oregon, California, Ltah, and Colorado. Erected September 23, 1912, by Lewis('lark ('hapter, Daughters of the American Revolution." Similar monuments have been placed at many other mailroad stations on the line of the old trail.

From Anes may be seen a gap in the line of bluffs south of Platte liver that marks the course of an old valley occupied by the river at an carly stage of its development, when its bed

Ames.
Elevartion 1,230 feet. Omana 53 miles. was about 100 feet higher than at present. The river then flowed southeastward past Wahoo and thence castward to the valley which it now occupies south of Waterloo. This old chamel is 5 or 6 miles wide and consists of a valley floor covered with loam and sand like the floor of the present valley. Aso like the present valley it is bordered along most of its course by steep banks of loess.
a line of trading posts extending from the Great Lakes to the Pacific, the Sandwich Islands, and China, but the War of 1812 put a stop to this scheme. Abrut 182 t Wifiam H. Ashley and Étienne Provost, of the Rocky Momntain Fur Trading C'o., discovered south Pass, which made permanent the mountain-crossing route of the Oregon Trail and later attracted the Lnion Parific lucating parties. Gen. Hodge says further:
"In 1843 the pathtimler, Gen. John C. Frémont, begar to spy out the military ways across the West, and the same year the Oregon pioneers took the first wagons westward to the Pacific. The trail that began with the journey of these early' pioneers was widened and deepened by the wherls of the Mornons in 1847, and when the herald of the first California fiohlon Age sent forth a trumpet call in 1849, heard around the world, the trail was finisinel from Great salt Lake across the monntains to the sea.
"That eral haul its great men, for great mon make eras. Beon Holladay, William X. Rassefl, and Elwarl Creighton gave to the trail the axerland stage line, the peny exprese and the telegraph.
"Dating the beviming of transcontinemtal wagoin travel from the days of fortynime, it was 20 years before the railroad rearhed California. The period was one
of great out of door men and women-the last of American pioneers. When the old trail was in full tide of life it was filled with gold seekers from the Missouri to the Pacific; 100,000 travelers passed over it yearly. Towns stiming and turbulent, some now gone from the map and some grown to be cities, flomished as the green bay tree. Omaha, Salt Lake, San Francisco and such lesser places as Julesburg, Cheyenne, Laramie, Carson, Elko, and Virginia City were picturesquely lively.
"The traflic of the old trail was of long wagon trains of immigrants; the great out fits laden with freight for the mines; of Molladay's coarhes, six teams in full gallop; of the first riders of the pony express; and of all other manner of moving men and beasts. The protesting savages have no place upon it but, perceiving in it an instrument to alienate their domain, burned its wagon trains and destroyed its stages as opportunity offered. At times great herds of buffalo obliterated great sections of the trail, yet it held its own until the golden spike was driven and passed away as a wagon road only when the need for it had passed. But the railroad lines that took up the burden of stage coach and pony express and ox team have marked the way of the trail upon the map of the West so that it shall endure as long as the West endures."

（EEOLOMIC ANH TOPOMHALHILC MAP
OVERLANI）ROUTE
Frome ornabat，Nebraska，to sun Frameiced，California

I＇N1TEI ぶTATEん（BEGLOGICA1，心LKVEY

$$
1015
$$

```
thece col mul nome
```


The town of North Bend (see sheet 2. p. 29) takes its neme from the northward bend of Platte River at this point, west of which the ratroad follows the river in a southwesterty direction

North Bend.

Elevation 1,27.1 feet. Population 1,105. Omaha 61 miles. for a long distance. South of the river,opposite North Bend, the blufls are conspicuous. expecially west of Morse Bluff, and consist of loess and glarial drift orerlying shale of Benton (Cretacous) age. This shale was formed as a mud deposit at a time when Nebraska was at the botton of a sea. It contains many fossil shells of extinet species of marine mollusks, such as oysters (see Pl. IV, , I. $B, \mathrm{p} .2(0)$, chams, and smails, as well as many fossils of types not represented by living forms, such as ammonites and scaphites. It underlies the superficial glacial deposits between Fremont and a point a fow milers werst of Schuyler.

In the vicinity of Schuyler, the seat of Colfax Comety, litfle other than the cultivated fields on the alluvial plain can be seen from the train. The Dakota sandstone. which here lies a little

Schuyler.

Elevation 1,348 feet.
Population 2,152.
Omaha 75 miles.
below the surface (sce fig. 3. p. 16), is of economic importance because of the artesian water it contains, and this water is held in confinement by the overlying shale. About 6 miles west of the town, between Lambert and Righand, the traveler passes from the Benton shale to the Niobrara limestone, ${ }^{2}$ although he would not suspect the change from anything he can see.

The westbound traveler is here passing directly toward the center of the ancient sea in which the sedimentary rocks of Cretaceous age were formed. He has crossed in the order of their deposition or age two formations of the Cpper Cretaceous series- the Dakota sandstone and the Benton shale-and now enters upon the third, the Niobrara,

[^3]River in northeastern Nebraska, appears to extend across the eastern part of the State in a broad band under Tertiary and later deposits. It is exposed for 125 miles along the vailey of Republican River, but to the north is seem only in Loup Valley near (ienoa until Missouri and Niobrara rivers are reached, in Holt, Knox, Cedar, and Dixon counties, where it can be seen in large exposures. The material is manly a sof timestone, chalk rock, or limy clay, presenting considcrable variation in compesition iromplare toplare. The geologic age of this formation is shown in the table prosented on P. 15. It is the youngest (retareons formation that is exposed near the Inion Pacific Railroad in eastern Nebraska.
which differs lrom the others in that it contains chalk similar to that of the well-known chalk cliffs of England. Some of the deep wells of this region encounter salt water in the shale and chalk rock. This is excluded from the wolls hy the casing, so that it does not mingle with the fresh water from the underlying Dakota sandstone. Other evidence of the former presence here of sea water are fossil shells of orsters and other animats that live in salt water and the bones of sea monsters such as Mosasaurus. (See Pl. V, B, and map on stub of sheet $2, ~ p .22$.)

A comparison of these ancient conditions with those of the present day indicates the slow. continuous change that is now and always ha- been in progress. Where the tourist now travels comfortably over a dry plain, these monsters sported in the water of the sea long ages ago. On the shores of this ancient sea lived equally strange beasts and birds of types that have long been extinct, and over its water sailed great flying dragons-the pterodactyls. The animals of that day were strikingly different from those of the present. The birds, unlike any now living, had jaws armed with teeth. The monarchs of the air then were not birds but flying reptiles, whose fore limbs had been modified into wings by the enormous elongation of fingers between which stretched thin membranes like the wings of a bat. (See Pl. V. (.) These flying dragons, some of which had a stretch of wing of 18 feet, were carnivorous; they were animated engines of destruction that somewhat forcibly suggest the modern war airplanes, of which they were in a sense the prototypes.

Columbus, the seat of Platte County, stands in the center of a fertile agricultural distri•t. In 1864 it was a frontier town consisting of a few scattered shacks; but, with total disregard for

Columbus.
Elevation 1,444 feet. Population 5,014. "maha 91 miles. things as they are and with true western confidence in things as they should be, George Francis Train, one of its citizens, then announced that Columbus was the geographic center of the United States and therefore the proper place for the national capital. Half a century has rapiod, howerer, and the seat of government is still at Washington.

Columbus is ori Loup River, or Loup Fork, as it is usually called, nour its junction with the Platte. The Loup is a stream of considrahle volume and neally constant flow, draining 13,540 square miles of the sand-hill region of northwestern Nebraska. West of the mouth of the Lomp the llatte usually consists of small irregular streams among the sand bars, foming a lacework of small channels, whose pattern changes with crecry flood. Although the Platte is normally a large river, draining 56,900 square miles and having a maximum distharge near Cohumbins of 51,000 cobbie feet a second, there is little or mow water in it above the Loup during the dry season, the water lome diverted for irrigation farther upstream.

A.

I;

MARINE FOSSILS OF CRETACEOUS AGE

1. Oysters (Ostrea congesta); P, Inoceramus labiatus.

CARBONIFEROUS FOREST.

1. SKELETON OF THE HEAD OF HESPERORNIS.

A large diving bird having teeth, which were probably used in catching and holding fish on which it fed.

I. RESTORATION OF A MOSASAUR (TYLOSAURUS). A sea monster about 30 feet long (After Hutchinson.)

(: RESTORATION OF A PTERODACTYL (ORNITHOSTOMA).
A flying dragon measuring 18 feet from tip to tip of wings. (After Lucas.)

Here and elsewhere in central and eastern Nebraska large quantities of grain are raised. Much of it, especially the corn, is forl to live stock. Animals raised on the western ranges are shipped here for fattening before they are sent to the market.

In the river bluffs along Platte Valley southeast of Columbus are the westernmost deposits made by the continental glaciers. East of a north-south line passing a little oast of Colmons the superficial deposits consist of looss and of glacial till containing howlders and fragments of rock brought from the north by the glaciers during one of their first southward advances in the Great Ire I ge, some features of which are described below by W. C. Alden.' These deposits make relatively high rolling plains. West of this line the surface of the
${ }^{1}$ Many of the physical features of eastern Nebraska were produced by sheets of ice that invaded the region during and after the earlier stages of the Great Ice Age. The deposit best exposed, in the street cuts and river bluffs in and near Omaha and along the line of the Union Pacific to the west, is a dustlike clay or loess. Beneath this lies the glacial drift.

Another feature is the great Missouri River, which swings majestically back and forth across its broad valley bottom as it gathers in the waters of the Great Plains on their way to the sea. In late Tertiary time, before the advent of the earliest continental ice sheet, Missouri River as now known was not in existence. The Dakotas were drained to IIudson Bay, and northeastern Nebraska was probably drained southeastward across Iowa. Platte River may have joined Grand River in Missouri. The bedrock east and west of the present lines of bluffs lies relatively low in the Omaha region, so that before the coming of the glaciers there was probably only a valley of moderate size with low slopes instead of bluffs.
The close of Tertiary time and the begimning of Quaternary time was marked in the northem part of the United States by the formation and spreading of vast sheets of ice similar to the great ice cap that now envelops all but the marginal parts of Greenland. From the mild and equable climate of the Tertiary period there was a change, not necessarily sudden or violent-perhaps only the lowering of the average annual temperature a few
degrees-so that a large part of the precipitation came in the form of snow, which was not all melted away in the summer. As this snow remained from season to season a vast amount finally accumulated and formed great glaciers. There were three main centers of accumulation and dispersion of this glacial ice, one on the Labrador Peninsula, a second west of Hudson Bay in the district of Keewatin, and a third in the monotains of western Canada. (See fig. 4, p. 22.)

At the opening of the glacial epoch the great Keewatin glacier sprearl sonthward and covered large parts of the Dakotas, Mimesota, and Iowa and extended thence into eastern Nebraska, where it was probably several hundred feet thick. The dark-blue clay containing pebbles and small bowlders which is exposed near the base of the river bluffs in South Omaha and near Florence, several miles north of Omaha, is a part of the deposit made by this earliest ice sheet. It is known as pre-Kansan, snb-Aitonian, or Nebraskan glacial till. As the front of the great ice sheet invaded the Dakotas and Nebraska the eastward-flowing streams were blocked and their water was turned southward. This water must have formed a stream somewhere west of Omaha.

This first stage of glaciation was brought to a close by the melting of the ice in a warmer interglacial time or stage-the Aitonian. During this stage the streams of the region swept great quantities of sand and gravel down their vallevs. Remnants of these sand and gravel
plains is less uneven and slightly lower, and the superficial deposits comsist of fragments of rock brought from the Rocky Mountains. These differ from the glacial drift in containing rounded pebbles, none of which bear evidence of glacial origin. They seem to have been brought from the mountains by streams which through long ages were engaged in leveling the Great Plains, much as Platte River is now grading its broad bottom lands, cutting away the higher places and building up the lower ones.
deposits, deeply weathered and in places cemented to hard conglomerate by lime or iron oxide, overlie the pre-Kansan glacial till at several places in the river

The late Prof. Samuel Calvin identified the remains of horses. camels, stags, elephants, mastodons, mammoths, and sloths. When these animals lived in western Iowa

Figure 4.-Map of North America showing the area covered by the Pleistocene ice sheet at its maximum extension and the three main centers of ice accumulation.
bluifs. A remarkable assemblage of animal: invaded the region after the ice had disappeared, and the bones and teeth of many of these animals have been found in the Aftonian deposits of western Lowa.
the climate there must have been comparatively mild and vegetation very abundant. Prof. Calvin says: "To supply these great herbivores with food required au abundance of vegetation such as could

```
:ale }\frac{1}{500.000
tely }8\mathrm{ miles to i mach
    10 15
``` comiles
\(15 \quad 20 \quad 25 \quad\) 3oKilometers
interval 200 feet
It Above mean sea level
Neiraska, are shown ivery io miles
lilreads are spaced 1 mile apart

WAF OF NORTH AMELICA, SHOURNG DISTEIEUTION OT I AND AND SEA in UNEE CRETACEGNE GEINTOT TISE Ares mut shaded indi.stec lamat chouled area indienter sea

West of Columbus the sailroad is close to Plate River, whese bed is only a few feet below the track level. The flowd pain in lum 10 to 12 miles wide and is confined between buffs 100 fore or mome in beight. It thms lies about boo feot below the leved of the fireat Plains, which extend far to the morth and to the south. The small towns of Duncem, Gardiner, Sitver ('reek, (latks, and Thmmmel are passed before the mext wity is reathed.

Near (entral (ity (see sheet :3, p. 26), the taveler patsen from the Niobrara limestome, of ('retaceous age, to the Pomations of Tertiary age. (bee tathe on p, 15.) If the yomere Central City. Cretaceous formations, the Pieere shate, Fix hills Elevation 1,gogeed. sambtome, and Latamie formation, were pord deporPopulation 2, 124 . Omaha 132 miles. ited here, they were eroded away before the Tertiary beds were laid down. The eontact thereform demotes a very long perion of time during which the odede edimentary formations were being eroded.
not be developed until some time after the pre-Kansan ice and all its climatic effects had disappeared from southwestem Iowa."

The character of the shells of the ireshwater and land mollusks fount in the Aftonian beds shows that the climate was similar to that of the present time.

After this mild stage the Keewatin glacier again spread southward and invaded the region. The ice reached at this stage its greatest extension in northem Missouri and northeastern Kansas, whence this is known as the Kansan stage of glaciation. As shown on the accompanying map (sheet 2) the western limit of the glacial driit crosses Platte River near Columbus, Nebr. The Kansan glacial drift that was uncovered in the cuts made in South Omaha for the Lane cut-off is bluish-gray clay containing reddish and purplish bowlder* of quartzite, popularly known as "sinux falls granite," brought by the glacier from the ledges exposed near Sioux Falls, S. Dak. This drift is not now well exprosed in these cuts, but it may be seen at a place \(1 \frac{1}{2}\) miles west of Papillion Creek, where it forms the lower 10 feet of the section exposed. Long exposure after the melting of the Kansan ice has changed the original blue-gray color of the upper part of this drift to rusty red, dissolved out the soluble calcareous ingredients for a depth of

8 feet. and caused many of tho granitio pebbles to decay.

After the melting of the Kansan clacier the continental ice sheente did not again reach as far as the line of the Union Parific Railroad. It the bat or Wiseonsin stage one lobe of the Kendatin elacier invaded north-central lowa pextending to Des Moines, nearly as far sonth as the latitude of Omaha. and another lobe rovered the northern and "astorn parts of the lyakotas southward to a point about 90 miles north of Omaha, lut Nebraskat was not again invaded.

An interesting deposit orerlying the glacial drift is exposed abont ti miles north of Omaha and at several places farther west. It consists of voluanic ash which must have acrumulated atter the moling of the Kansan glacier, at a time when the air was filled with volnanic, thet from eruptions, possibly those of the Quaternary volcanoes of mortheastern New Mexien.
\({ }^{1}\) In marked fomrast with the (retaceous formations, which were laid down in shallow marine water and which ars regular in thickness and character ower sast areas, the Tertiary deposits of this region are imequat in thickness and characher, are nombarine. and were deposited aloner streams or in shallow lakes. During tho (redaroms period Nobrask and certain other pats

Grand Island, the seat of Hall County, is a railroad center, a division station of the Union Pacific, where extensive

\section*{Grand Island.}

Elevation 1,561 feet. Population 10,326 . (maha 153 miles. shops are maintained, and a city of considerable commercial importance, having numerous factories and mills. It is in an agricultural district where the raising of sugar beets is one of the principal industries. About \(7.000,000\) pounds of granulated sugar is produced here every year.

The first known reference to Grand Island is contained in the account of Robert Stuart, an employee of John Jacob Astor, who left Astoria in 1812 and traveled eastward over what was later known as the Oregon Trail. The greater part of this journey was made through a country then wholly unknown. "Le Grande Isle" was the first place he was able to recognize on his way cast. Grand Island, a strip of land about 42 miles long, included between two chamnels of the Platte River, had previously been risited by trappers, most of whom were French Canadians, but white people did not settle here until 1857. In 1866 the Union Pacific was built north of the north channel and the site of the city of Grand Island thus determined.
of central North America lay beneath the sea, but with the Tertiary period hegan a new order of things. The sea, which had extended from Iowa to Utah, was expelled by uplift from the interior of North America, and in the midst of the region the sea formerly covered the Rocky Mountains began to rise. It is this change from a quiescent sea to mountainous uplands, with all the disturbances attending it, that marks the division in geologie time between the 'retaceous and the Tertiary period. If at the present time the waters were expelled from the Gulf of Mexico and high mountains raised in their place, the resulting changes in climate, geography, etc.. would be less conspicuous than those which marked the change from (retaceous to Tertiary in the interior of Nonth America.

The earth movements that formed the Rocky Mountains also brought the (ireat Plains and the intermontane basins above sea level, so that the region now traversed ly the Union Pacific from Omaha to the Wasatch Mountains, which had formerly lain under the water of the
sea, was changed to dry land and, so far as is known, has never since been covered with sea water. The plains were doubtless very low-not much above sea level at first. Rivers heading in the newly upheaved momtains washed sediment out upon low-lying plains, where it accumulated because the streams were too sluggish to carry it away. This newly emerged land became inhabited by animals, some of which were doubtless developed from ancestors that lived in North America during Cretaceous time, though others immigrated from other continents. The skeletons of these animals were buried in the sands and muds deposited by the streams, and from the fossil remains of their bones the paleontologist is able to determine to some extent their forms, appearance, and habits.

Great changes took place also in the climate, a fact indicated by the character of the plauts, a critical study of whieh shows that although the same general types of vegetation that had flourished throughout the Cretaceous continued into the Tertiary the species were nearly all different.

Grand Island is in the midst of what was fomerty known as the great buffalo range. Gen. Dolge says:

When the railroad reathed this point, in latit. huifale were mumerous. In the spring these animals were wont to cross the Platte from the trkansas and Republiwan valleys, where they had wintered, to the northern fombtry, returning again. seck and fat, late in the fall. Gradually their numbers derreased on this range untit 1873, when they disappeared. But at Juleshurg. 219 miles farther wost, a small band was seen to cross the river as late as 1876 . In 1860 immense louds were on? these plains. On the south side of the Platte, on the whemigrant roat, the number was so large that emigrant teams often had to stop while they were crossing the roat. At Fort Kearney, on the south side of the river, in 1stio, an order was issued by the post commander, forbidding the soldiers to shoot the luffato on the parade grount.

Some attempts have been made in the region of Grand Island to sink wells to the Dakota sandstone to obtain artesian water. A well put down for the city some years ago penetrated 220 feet of sand, gravel, and clay, consisting of river deposits and probably also of some Tertiary material, and then went through shale to a depth of 935 feet without finding the sandstone. The artesian stratum therefore lies at some greater depth. At Hastings, about 25 miles farther south, a well 1,145 feet deep entered sandstone that may be the Dakota.

On leaving Grand Island the train passes through the middle of the valley, which is here 22 miles wide. From anything the traveler can see from the train he might imagine himself to

\section*{Wood River.}

Elevation 1,963 feel. Population 796. \(O\) maha 169 miles. be passing over a boundless plain, for the bluffs on cither side of the valley are too far away to be distinguished. The surface looks level, but as a matter of fact it rises toward the west about 10 feet to the mile. No surface depression, such as the term "valley" might lead one to expect, can be seen. The river flows in many interlacing channels that frequently shift their position.

Over this part of the route there are long stretches of straight track. West of Silver Creek the train runs for 40 miles in a nearly straight line. The roadbed is remarkably smooth and free from dust, being ballasted with Sherman granite. (For description see p. 43.) This part of the route is on the typical Great Plains, \({ }^{1}\) which

\footnotetext{
\({ }^{1}\) The Great Plains constitute that part of the continental slope which extends from the Rocky Mountains eastward to the prairies of the Mississippi Valley. Smooth surfaces characterize most of this area, but in some parts of it there are buttes or flat-topped hills and long bluffs or escarpments. In other places there are large areas of bad lands and sand hills.
}

The origin and development of the Great Plains are difficult to determine. From Omaha westward to the Laramie Range, a distance of more than 500 miles. the surface rises with a regular inclination that is imperceptible to the eye but amounts to more than 5,000 ieet. The rocks of this area, aside from the thin Tertiary formations and the superficial
ri-e gradually but regularly from the prairies of Mississippi Valley to the Rocky Momotains.

West of Wood River are Shelton and Gibbon, agricultural and stock-feeding centers. Two small torms, Optic and Buda, are next passed by the train before it enters Kearney.

Kearney (see sheet 4, p. ns) takes its name from old Fort Kearney, which stood south of the river, a few miles east of the city, at the junction of the emigrant trail from Kansas City and

\section*{Kearney.}

Elevation 2,14f feet. Population 6 ,202. Omalaz 19 ai miles. the Platte Valley trail. It was a center of turbulence during the time of Indian warfare. Here during the construction of the Union Pacific Railroad, according to Gen. Dodge, there were more desperate fights and literally hair-raising adventures than James Fenimore Cooper ever dreamed of, and here Maj. Frank J. North, with his four companies of Pawnee Indians, made history defending the Orerland Route against hostile Indians. The Plum Creek, Cgalalla, and Summit Springs campaigns under Maj. North's direction did much to prove conclusively to the Sioux and Cheyenne that he was their absolute master. The same writer says that every mile of the railroad had to be surveyed and built within range of the riffe and under military protection, and much of the success of the enterprise he attributes to the active support of Gen. Grant and Gen. Sherman.

The bottom land, which farther east is about 22 miles wide, here narrows to a width of 6 miles. The river bed is very wide and shallow and the wagon bridge over it south of Kearney is nearly a mile long. Except at times of high water broad stretches of sand in this bed are exposed to the strong northwest winds, which pile it up south of the
deposits, are of marine origin: they were formed below sea level. Later they were tilted, but without notable warping. through this great distance and beveled bey erosion, so that the suriace of the plains region extended across the eroded edges of the Cretaceons formations from oldest to youngest. On this surfiace were later spreal out the stream deposits of Tertiary and Quaternary age, and at the extreme east the glacial deposits.

1 groed illustration of this grading proccond is furnished by Platte River, which flows in a shallow valley cut slightly bolow the surface of the plains and has the same gradient or slope as the flains themselves. This gratient is in nice adjustment to the load oi sediment that the river carries, so that although during past ages the Platte sometimes cut its
channel deeper than it is at present and sometimes built it up, as it seems to be cloing now, it has on the whole spent its energy in widening its valley and forming remarkably even bottom lands. If this process goes on long enough the Platte and its neighboring streams will form new Great Plains. slightly lower than the present plains but having essentially the same eastward inclination. On the other hand, should some condition arise whereby the sediment supplied to these rivers would be increased in volume not only might the present valleys be filled with sand, gravel, and clay, but the whole suriace of the plains might be built up, the conditions thrs supposed to exist simulating the conditions that prevailed in this region during middle and late Tertiary time.

BULLETIN 612
(iEOLOHIC AND TOPOGRAIHIC MAP
ONERLANJ) ROUTE

L'N1TED \&TATES (GEOLGGI(AL GLRVEV

1015

river, destroying much productive land. The samdedume areas are characterized by irregular, hmmocky surfaces, some of the higher mounds rising 100 feet or more above the general surface. The largest bodies of sand extend for 50 miles along the south side of the Platte Valley south and west of Kearney. The width of the wider parts of this sand-dume lelt is about 3 miles.

The Overland Route here reaches its soathemmost point and turns again toward the north. On leaving Keamey the travelor may see the buildings of the State Normal School on the low land north of the road and in industrial shool on the highlands.

West of Kearney the bluffs, consisting of loess overlying rooks of late Tertiary age, \({ }^{1}\) are about a mile from the raitroad.

Could the traveler restore the landseape of late Tertiary time, he would find himself surrounded by seenes greatly different from thene of the present. The swampy lowlands were covered with vegetation similar to that now growing in moist climates farther south. He would recognize few of the animab, for there were camels, mastodons, rhinoceroses, saber-twoth tigers, and other strange beasts, some like those living now only in far-distant lands. (See Pl. Vl., p. 40.) There were numerous horses, but none of them were like the horses of to-day. In place of the one hoof or modified toe on cach foot which the modern horse possesses, his Pliocene ancestor had three. \({ }^{2}\)

\footnotetext{
\({ }^{1}\) A large part of the entral Great Plains is covered, according to N. H. Darton, by deposits of Miocene and Plocene age. underlain to the west and northwest by formations of the White River group, of Oligocene age. All these formations lie mainly on the Pierre shate but overlap other formations to a greater or less extent. The average thickness is 200 to 300 feet in eastern Colorado and western Kansas but increases to nearly 1,000 feet in parts of western Nebraska and southeastern Wyoming. Probably the entire region was originally covered by later Tertiary deposits that extended far up the flanks of the Rocky Mountains, the Bighorn Mountains, and the Black Hills, as indicated by the ocourrence of outliers at high altitudes.
\({ }^{2}\) The Pliorene of western North America is not well known, hut along Snake Creek in western Nebraska there are some deposits referable to this ejoch, and from fossils found in them and in rocks of the same age in other parts of the country a considerable number of the animals that lived on the Great Plains during Pliocene
}
time are known. Though these animals form an assemblage very different from that of to-day, they much more closely resemble the living animals than those of former ages. Camels and llamas were abumdant (see Pl. VI. p. 40) and great ground sloths and glyptodonts (see Pl. II, (., P. 10), whose relatives now live in South America, inlrabited western No. braska during Pliocene time. Mastodons with tusks on both the upper and the lower jaws. much like those of the Diorene epoch. still persisted. Short-legged rhinoeeroses remained abundant, and there was a great varicty of woli-like carnivora. Saber-toothed tigers and true cats. some of them considerably larger than the modern tirers. were also abundant. Theeetoed horses were still numerous. but the modrungenus Efuns was not among them. One of the most corious animals of the time in Kansas and Nebraska was a gopher-like rodent that had two large horns on its nose. (Sce PI. II, E, p. 10.) Its cnormons claws indicate good burtowing powers, and its horns also may have been used in digging.

Ifter passing the relatively small towns of Odessa, Elm Creek, Overton, and Josselyn, the train reaches the city of Lexington, formerly known as Plum Creck. This was once noted

\section*{Lexington.}

Elevation 2,387 feet.
Population 2,059.
Omaha 231 miles. as a favorite locality for depredations by the Southern Cheyenne Indians under Chief Turkey Leg, who captured and burned a freight train here in 1867. It is now more famous for its irrigation system. Farther east the farmers depend on the rainfall to water their crops, but from this point westward the river waters are diverted through large ditches and distributed over the cultivated land.

The next station is Darr, beyond which is Cozald, named after a Cincinnati capitalist who purchased a 40,000 -acre

\section*{Cozad.}

Elevation 2,485 feet. Population 1,096.
Omaha 245 miles. tract of land and laid out the town on it. The rillage of Willow Island takes its name from one of the so-called islands included between old channels of the river that are now occupied ber water only during floods. It now consists of only a few houses, but has

\section*{Willow Island.}

Elevation 2,520 feet. Population 530.
Omaha 250 miles. the distinction of being the point from which in 1872 Col. W. F. Cody ("Buffalo Bill") started with Alexis, Grand Duke of Russia, Gen. Custer, Gen. Sheridan, and others for a buffalo hunt over the prairies.
Just before entering Gothenburg the train crosses a large irrigation canal, and farther west such camals are seen in many places. The bottom lands are devoted to the cultivation of crops, Gothenburg. and the higher land or general surface of the Great
Elevation 2,561 feet. Population 1,730. Omaha 255 miles. Plains, at considerable distances both north and south of the roud, is used largely for grazing. Here, as at almost every other town along the railroad, may be seen elevators, tall buildings used for storing grain.

West of the town is a prominent ridge of sand hills, which the road skirts for many miles. Their barren aspect is in strong contrast with the appearance of the productive bottom lands. This is a part of the great sand-hill district which covers nearly a fourth of Nebraska. The sand is probably derived by disintegration from the Tertiary beds and was heaped into hills by the wind at a time when the surface was not well protected by vegetation. The movement of the sand is checked by the spread of vegetation, especially the bunch grass that grew here generally before the advent of the white man. Where this protecting cover has been destroyed for any reason, such as orerstocking, and the sand is exposed, movement begins again and dunes and blow-outs are produced by the winds.

South of the river, about 5 miles from the railroad but plainly visible from the train, are steep slopes and bluffs rising abruptly to a plain that lies 200 feet or more above the bottom lands. There is a notable contrast between the lands along the river and these bluffs, which parallel the railroad for many miles. The slope is notched

fiEOLOMill AND TOPOMRAPHIC MAP
() (TERLAND ROHTE

From Chalia, Nobranka, to san Fiamioco, Califomia

UNITEI NTATER GEOLOCICAL \&LRVEV AKMRIFE MTI SMITH RHEETTOK

\(1!11 \mathrm{~s}\)
Earh zeaitrapie show win the mog with a nome in zurenthesti in the

deeply by canyons with precipitous walls of loess nearly 200 feet thick, which is underlain by sand and gravel containing pebbles of rock brought by the streams in past ages from the Rocky Mountains.

West of Gothenburg the train passes Vroman, Brady Island. Hindrey, Maxwell, Keith, and Gannett before entering North Platte.

The city of North Platte (see sheet 5, p. 30), the seat of Lincoln County and the chief commercial center of western Nebraska, stands at the junction of North Platte and South Platte

\section*{North Platte.}

Elevation 2,800 feet. Population 4,793. Omaha 291 miles. rivers. It is in the middle of an irrigation district, where sugar beets, hay, and other farm products are raised. About \(1,000,000\) tons of hay is shipped ammally from this town to the mountain markets. Here are a United States land office and a station of the United States Weather Burean, and 4 miles south of the city there is a State experimental farm.

North Platte is a railroad division point. Here the railroad mainrains extensive shops and an icing plant, said to be one of the largest in the United States, where more than 10.000 cars of fruit and other edibles are iced annually. The plant may be seen to the left by the westbound traveler as he leaves the station. At this station the change is made from central time to mountain time, one hour earher.

Just before entering the city the train crosses North Platte River, waich generally carries a considerable volume of water. The South Platte is dry except during times of floods, beeause its water is used for irrigation farther upstream. The North Platte is 650 miles long and drains about 28,500 square miles. At North Platte
as a maximum discharge of about 20,000 cubic feet a second and a
nimum discharge of 70 eubic feet a second. Its average volume of Low during the nine months from March to November is 3,490 eubic set a second.

Southeast of the rity are promment bluffs of loess, rising abruptly 400 feet abore the bottom lands. The loess is about 350 feet thick and lies on the "mortar beds" described on page 30 .

West of North Platte there are many small towns and stations concerning which no information need be given except that shown on the accompanying maps. Many of the stations in Wyoming consist only of section houses, and some are nothing more than signposts.

Beyond North Platte the valley widens considerably, being the double valley of the two rivers, and the train passes for several miles through an irrigated district, in the center of which

\section*{Hershey.}

Elevation 2,901 feet. Population 332. Comaha 303 miles. stands Hershey. The fields in the bottom lands are called farms, but similar fields on the highlands are called ranches. This district is in the transition zone between the East, where each plot of rural ground is a farm, and the West, where each plot other than a town lot, regardless of size or uses, is a ranch. Although the term "ranch" is too
dear to the heart of the western man to be easily replaced by the more homely term, the tendency in intensive development under irrigation is to speak of "farms."

Near Sutherland, between the rivers, about 6 miles west of Hershey, begins a narrow ridge which toward the west gradually develops into a hroad table-land. From Dexter to Ogalallia the South Platte and the railroad are close to the bluffs bordering this table-land. This stretch of the river bed is dry most of the year, all the water being used for irrigation farther upstream.

Here and at other places where the bluffs come close to the river many travelers in the days of the Overland Trail suffered from attacks by Indians and white outlaws, who would swoop down unexpectedly from their hiding places in the hills to murder and plunder. It is difficult for the modern traveler surrounded by the luxuries of the railway train to realize the hardships and dangers endured by the men and women of indomitable courage and energy who under such conditions invaded and finally conquered the West.

Beyond Dexter the train passes the station called Paxton before reaching the town of Ogalalla.

Ogalalla (see sheet 6, p. 34) is a name used by the Brule Sioux, a powerful and warlike tribe which under Chief Spotted Tail is said

\section*{Ogalalla.}

Elevation 3,211 feet. Population 643. Omaha 341 miles. to have included 10,000 warriors. About 25 miles northwest of the town is Ash Hollow, where Gen. Harney defeated these Indians in 1859. In the early days of the Union Pacific Railroad Ogalalla was notorious for its lawlessness and for the pranks of cowboys. It was the point to which great herds of Texas cattle were driven across Oklahoma, Kansas, and Colorado, to be loaded on the cars for shipment to the eastern markets.

The town lies between the river channel and the rocky bluffs, which are well exposed for several miles to the east. Although the river bed is dry most of the year water can always be found in the sand just below the surface. This supply has been utilized for irrigation at Ogalalla by means of an underflow chamel or underground drain into which the water finds its way, to emerge farther downstream upon the lands to be irrigated. The bluffs consist of beds of sand and gravel cemented together in some places into a relatively hard rock, locally known as "mortar beds." This name is expressive of the appearance and character of the rock, which resembles masses of sand and pebbles mixed with mortar. In these roeks are found fossil bones and teeth of extinct mammals. The rocks constitute the Ogalalla formation.'

\footnotetext{
\({ }^{1}\) The Ogalalla formation consists mainly of sand and gravel, cemented in some places by carbonate of lime into a resistant conglomerate. It crops out along the

Union Pacific Railroad as far west as Pine Bluff and occurs in large areas in western Kansas and Nebraska and eastern Colorado. This formation is widely distrib-
}

The village of Brule is maned for the Bruld Siomx ludians, who one imhabited this region. The Fronch word brulé, which means burnt, seems to have been applid by the early Ferench Cana-

Brule.
Elevation 3,286 feet. Population 410. Omaha 352 miles. dian trappers to these Indians because of the burnt appearance of their painted fares. Also, for some reason not now known, the Indians called themselves "The Burned Thighs."
Four miles west of the town is California 1linl, where the original California trail left the South Plate and crossed the low table-land to North Platte River. Until 1860 the emigrants went up this river around the north end of the Laramie Mountains and over the Contimental Divide

Figure 5.-Sketch profle of the hulls near Brule, Nelr., showing relation of the dgalalla formation to the overlying leeds of coarse sand and gravel, on which rest thick heds of loess.
at South Pass. But when the United States soldiers were called east at the begimning of the Civil War the northern Indians became so aggressive that emigrants chose the less dangerous route up the
uted over the Great P'lains. Along the the intervening formations being absent Union Pacific it lies on the Brule clay, a here. lis relations are indicated in the formation of Ohgocene (Tertiary) age, following table:

Succession of rocks exposed in contral and western Nebrasta and enstern Wyoming.
\begin{tabular}{|c|c|c|c|}
\hline Period. & Epoch. & Life. & Group and formation. \\
\hline \multirow{2}{*}{Quaternary.} & Recent. & \multirow{2}{*}{Age of man.} & Flood-plain deposits. \\
\hline & Pleistocene. (Great Ice Age.) & & Locse and gravel. \\
\hline \multirow{4}{*}{Tertiary.} & Pliocene. & \multirow{4}{*}{Age of mammals.} & Orulalla formation \\
\hline & \multirow[t]{2}{*}{Miocene.} & & Arikaree formation. \\
\hline & & & Gering formation. \\
\hline & Oligocene. & & White River group: Brule clay. Chadron formation \\
\hline
\end{tabular}

The Ogalalla formation is overlan by coarse sand and gravel similar to that in the river bed at the present time, and
this in tum is covered with the loess that clothes the hightands. The relations are indicated by the sketh profile, figure 5.

Bouth Plate Viller and through southern Wyoming．It was this southern fork of the Overland Trail that the Union Pacific followed and that recently has been chosen for the Lincoln Highway．\({ }^{1}\)

Near Big Springs as the name implies，there are large springs of water．which issue from the bluffs to the right（north）of the station． Here in 1577 there was a bold train robbery，after Big Springs．Nebr． which．by an equally bold movement of the authori－

Elevation 3,367 feel． Population 6ts．
（）maha 3to miles． ties，the robbers were overtaken and killed in a fight． Geologically the place is of interest as marking the western limit of the thick loess and underlying gravels previously described．North of Big Springs these deposits terminate by abutting against a sharp rise of the Ogalalla formation， and farther west this formation occupies the surface．About 8 miles west of this station the road dips southward into Colorado，in which it runs for 10 miles before returning to Nebraska．

At Juleshurg．in northeastern Colorado，the Union Pacific Railroad forks，one branch extending up South Platte River to

Julesburg，Colo．
Elevation 3， 465 feet． Population 962.
Cimana 372 miles． Denver and the other or main line turning northwest－ ward up Lodgepole Creek．At this point passengers intending to travel by way of the scenic route of the Denver \＆Rio Grande Railroad through the Rocky Mountains take the Denrer hranch．

Gen．Dodge writes：
No town on the western plains has had a more checkered or exciting history than has Julesburg．It has been built on four different sites．In the days of the overland emigration a fort was established here and garrisoned with soldiers to protect travelers from the Indians．Old Julesburg，the first，was located about 1 mile east of the fort． on the south bank of the river at the old ford crossing．It was sacked and burned ly the Indians February 2，1865．In July following the great sioux war broke out， and from that time on till peace was declared there was more Indian fighting in this vicinity than at any other station along the Platte Valley．During these times Maj． O＇Brien says buffalo were more plentiful on the plains around Julesburg than the vast herds of mative cattle were in later years．＊＊＊

A second Julesburg was built 4 miles east of the fort．This was moved to the north side of the river，where the town of Weir now stands，and at one time was the terminus of the Cuion Pacific Raihoad and contained 7,000 poeple．Here the desperado ele－ ment held sway until the better class of citizens organized themselves into a vigilance committee and by their just but necessarily severe verdicts and punishments rid the town of these lawless frontiermen and established a peaceful government．

\footnotetext{
\({ }^{1}\) The Lincoln Highwat，designed as a momorial to Abraham Lincoln，is to be an improsed thoronghiare extending arross the continent from New York to San Francisco by゙ the shortest practicable route．It will he 3.389 miles long and will traberse 13 states．The ronte was laid ont and announed by proclamation in 1913 by゙ the Linnoln Highway Associa－
}
tion，whose headquarters are in Detroit， Mich．，and the work of improving it is progressing rapidly under the direction of local committees．The distinctive red， white，and blue pole markers now cover about 90 per cent of the route，which is already used by numerous touring parties． Between Omaha and San Francisco it follows the Overland Trail．

At that time an Indian would trade a buffalo robe for a (up of sugar or a yard of red flamel. Buffalo skulls were used as tablats and signposts along the trail. A skull may be seen to-day in the (ommercial Club in Salt Lake City with the inseription, "Piomerss camped here June 3, 1847, making fifteen mites a day; all well. Brigham Young.'"

Julesburg was an important stage station on the Overland Route in 1865 and as a supply point was the subject of much attentom from the Indians. The station was named after one Jules, agent for Ben Holladay's stage line. He was killed by J. A. Slade, a noted desperado, who fought both for and against law and order and whose carcer is set forth in Mark Twam's "Roughing it."

Figure 6.-Typical sand dune with blow-out in its top, illustrating the depressions formed by the wind in the sand-dune country, where the sand is loose enough to be easily shifted.

Just beyond Julesburg the main line leares the South Platte Valley and, turning northward up Lodgepole Creek, reenters Nebraska. At the turn of the road near Weir is a group of sand hills showing characteristic blow-outs \({ }^{1}\) or hollows formed by the wind. (Sce fig. 6.) Lodgepole Creek takes its name from the fact that here the Indians formerly obtained the poles about which they stretched the skins or canvas to form their tents or tepees. Very little timber can be seen now in any part of the valley that is traversed by the Union Pacific. The train passes several stations and small towns-Weir, Ralton, Chappell, Perdu, Lodgepole, Sunol, and Colton-between Julesburg and Sidney.

\footnotetext{
\({ }^{\text {I }}\) These blow-onts, some of which occur in the tops of the hills like craters in a volcano, are produced by the wind wherever it gets a chance to lift the sand. The exposed tops of the dunes are especially favorable places. The protecting cover of growing vegetation becomes broken, perhaps by a badger lyurrowing out a
home for his family or by a coyote diggings out a gopher for his breakiast. The wind blows out the loose sand, the sides of the hole cave in and make more loose sand to be blown out, and this process goes on until the blow-ont is so deep that the wind can no longer liit the samd over its rim.
}

Thet bofore entoring sidney (see sheet 7, p. 36) the train passes under the tracks of a branch of the Chicago, Burlington of Quincy Railroad that runs from Denver to Alliance, in westSidney, Nebr. orn Nebraska. The valley here is confined between Elevation tom feet. bluffs composed at the top of an impure limestone, l'opalation 1,155. f:mitha 414 miles. "alled "mortar beds." These bluffs are prominent near Sidney, where the rock is used as a building -tone. It has furnished material for the depot and for many of the business blocks and public buildings in Sidney and neighboring towns. Were it not for the pebbles of harder rock that are embedded in it and make cutting difficult, it might be a valuable building stone. The "mortar beds" constitute the lower part of the Ogalalla formation and rest with uneven base on the Brule clay. Both these formations contain fossil bones of extinct mammals.'

The inssils found in the Ogalalla formation show that westem Nebraska was inhabited in late Miocene time by aminals of very different types from those living there now, and also that very different physical conditions prevailed at that time. In place of the dry, barren phains of to-day there were numerous streams and swampy lowlands. The fossils of the Ogalalla and Arikaree formations are not greatly different and will he describerl together. Both these formations were spread out over a great plain, and it is not surprising to find in them the bomes of plains or running animals, surth as camels, horses, and deer, as well as of those that inhabited rivers, bayous, and marshes. Some of the horses were as large as small ponies and were more nodern in appearance than their diminutive Oligocene and Eocene ancestors. They were also more numerous than their ancestors. and their fossil forms represent weral widely different species.

The Arikaree contains great numbers of hones of a peculiar type of animals "allen thaherotheres. They were larger than a large horse and had a horselike hearl, long front legs, and shorter hind] arge, but every foot had three toes, each ,if which in place of a hoof bore an enornums claw. One of the forms. known as Moropus see Pl. VT, C, p. 40), was atrangely grotesque. An equally strange
form of Miocene time is a deerlike animal called Syndyoceras (see Pl. VI, D), whose headdress equaled or outdid in grotesqueness that of its Oligocene ancestor Protoceras (see Pl. VII, E, p. 41). Its head somewhat resembled that of an antelope but was longer and had four horns, the larger pair, over the eyes, curving inward and the smaller pair, nearer the muzzle, curving outward. Although these are called horns, they were really bony protuberances and were probably not sheathed in real horn.

Camels were common in North America during the Miocene epoch, and several forms have been found. Those of one genus (Procamelus) were about the size of sheep and are supposed to be the ancestors of modern camels and llamas. Others were large and had long necks like the giraffe (see Pl. VI, \(E\)). All these ancient camels had hoofs like cattle, not cushioned feet like those of the camels of the present day.

Rhinoreroses were abundant in Miocene time. Hundreds of specimens of Teleoceras, a very heavy bodied, shortlimberl type (see Pl. VI, A), have been found. The proboscidians, of which the elephant is the best-known type and the only living representative, became prominent during the Miocene epoch, when a large mastodon called Trilophodon was common.

Sidney came into prominence in 1868, when a military post was established here to protect emigrants and railroad builders from the Sioux and Pawnce Indians, the two powerful tribes of western Nebraska. This post was maintained until 1894. Sidney was the point from which freight was hauled to the Black Hills mitil that region was supplied from raitroads ruming much nearer to it than the Unon Pacific.

Beyond Sidney the trains pass several stations and small townsMargate, Brownson, Herdon, Potter, Jacinto, Dix, and Owasco (all shown on sheet 7)-before reaching Kimball (see sheet S, p. 38).

West of Siduey the "mortar beds" of the Ogalalla formation, which continue to make conspicuous bluffs north of the track in many places, contain the fossil bones of many ani-

\section*{Kimball.}

Elevation 4,704 feet. Population 454. Omaha 451 miles. mals. \({ }^{1}\) These have been deseribed by Prof. W. B. Scott, Prof. H. F. Osborn, and others. In these bluffs below the cap rock may be seen the Brule clay, the youngest formation of the White River group, \({ }^{2}\) of Oligocene (Tertiary) age. (See table on p. 31.) The exposures in the Lodgepole Valley are not so conspicuons as those in the North Platte Valley, a little farther north, owing to the covering of grass which protects the surface from erosion. In the North Platte Valley badlands are developed at many places on the Brule clay, and curious buttes, remnants of this clay, have been left by crosion, such as those known as The Jail (Pl. VII, A, p. 41) and Chimney Rock, which served as a landmark to many emigrants in the carly days.

After leaving Kimball the train passes Oliver and Bushnell before reaching Smeed. The "mortar beds" which were observed

\section*{Smeed, Nebr.}

Elevation 4,933 feet. Omaha 468 miles. farther east at the top of the bluffs descend to the valley floor west of Kimball and are not conspicuous, but west of Smeed they rise again in bluffs, become more prominent, and terminate in Pine Bluffs. Just west of Oliver, which is only a sigupost, may be seen to the left (south of the railroad) a small reservoir for the storage of irrigation water, which is used in the valley farther downstream.

Just before entering Pine Bluffs the traveler sees to the right, north of the track, a stone monument marking the boundary between Nebraska and Wyoming.

\footnotetext{
\({ }^{1}\) See footnote on, p. 34.
\({ }^{2}\) The White River group, which has been studied mainly in the bad lands southeast of the Black Hills, has long been a favorite collecting ground of the paleontologist. Fossil bones have been found in many parts of the group, and
}
those of certain animals are so abundant as to give their names to the rocks containing them, such as Titanotherium beds. Oreodon beds, and Protoceras sandstone. More romplete information on these fossils may be found in the works of Prois. Scott and Osborn. (See p. 230.)

Wyoming is a State of large resources, whose development has only begun. Within its 97,594 square miles lie the most extensive coal fields and the most productive known oil fields Wyoming. of the Rocky Mountain region, thousands of acres of irrigated and dry-farming lands, and extensive areas of splendid stock range; moreorer, some of the finest hunting and fishing in the United States can be found within its borders. Although the precipitation arerages only \(12 \frac{1}{2}\) inches a year, the many irrigated areas are highly productive, and the success which dry farming has here and there attained seems to indicate that a still larger area may be brought under that kind of cultivation. An index of the crops that may be raised is the fact that irrigated oats ruming 45 pounds to the bushel are by no means uncommon. (The average weight of a bushel of oats is 32 pounds.) The value of the State's agricultural crops for 1914 is roughly estimated by the Department of Agriculture at \(\$ 22,000,000\).

Noted in the early days as the range of the "cattle king," Wyoming has in recent years become even better known as the home of the "sheep baron." It has attained first rank among the United States in the sheep industry, the number of sheep in the State on January 1, 1915, being estimated by the Department of Agriculture at \(4,427,000\), valued at \(\$ 20,807,000\). It should not be understood, however, that the cattle industry has vanished, for the State still ranks high as a cattle producer.

Among the mineral products of the State coal is preeminent. Its coal fields cover about 41,500 square miles (42 per cent of the State's area), and contained originally about \(670,723,100,000\) tons. Of this quantity only \(178,000,000\) tons (about one-fortieth of 1 per cent) has been exhausted, so that there remains in the ground the enormous amount of \(670,545,100,000\) tons. The production in 1913 was \(7,393,066\) tons, valued at \(\$ 11,510,045\).

The second in value of production among the mineral resources is oil, of which \(2,406,522\) barrels, valued at \(\$ 1,187,232\), was produced in 1913. The production in 1914 amounted to about 4,600,000 barrels, equal to more than 60 per cent of the production of Pennsylvania for the same year, and places Wyoming, whose oil fields are newly discovered and only partly developed, in the ninth place among the oil-producing States of the Union.

Other minerals, including gold, copper, iron, gypsum, limestone, sandstonc, marble, brick clay, and mineral waters, brought the value of the State's mineral production in 1913 up to \(\$ 13,682,091\). Among the undeveloped resources are bituminous shale, volcanic ash, graphite, asphaltum, manganese ores, bentonite, tin, salt, bismuth, and, perhaps most important, phosphate rock, on which the future of American agriculture may largely depend. It is estimated that

```

500.000
8 miles to l inch
15

``` 2. Miles

20
25 aokionnetels
val 200 feet
BOVE MEAN SEA LEVEL
maska, are shcu'n every io miles tis are spaced ! mile aparl
(iEOLAGIG AND TOPOMRAPBIC MAP
OVERLAND ROUTE
From Omaha, Nebrasks, to Fian Frameisco, Caliormia

UNITEI) STATES (AEOLOGICAL SLKVEY

1915
Each quasiongi, shout on the man with a mame in eocrentress in the loukt left camp is mapped in detolt on the US S S 7 peagach

more than \(1,250,000\) arres in Wyoming are undertain by workable phosphate deposits, a phosphate area greater than that of any other State.

Finally, the scenic resources of Wyoming must not be forgotten, the grandeur of the Bighorn and Wind River mountains and the Tetons being excelled only by the wonders of Yellowstone Park. Thus the State of Wroming is of interest in its agriculture, stock growing, mining, hunting, fishing, and natural beauty.

The town of Pine Bluffs takes its name from the prominent bluffs of "mortar beds" near by, on which grow a few stunted
Pine Bluffs, Wyo pine trees. A tree is so rare on these sun-parched

Elevation 5,043 feet. Population 246. Omaha 473 miles. plains that these pines seem to have been thought worthy of commemoration in naming the ridge. The bluffs may be seen for a long distance north and south of the road and mark the western edge of the Ogalalla formation.

The Arikaree formation \({ }^{1}\) underlies the Ogalalla formation near Pine Bluffs and extends thence westward to Granite Canyon, a distance of 62 miles. It consists mainly of sand loosely cemented into a soft sandstone that contains limestone concretions. These are due to the growth of calcite crystals and usually occur in layers connected to form irregular sheets.

Between Pine Bluffs and Hillsdale are the stations Tracy, Egbert, and Burns.

Near Hillsdale station the traveler gets his first glimpse of the Rocky Mountains. To the west may be seen the dark summits of

\section*{Hillsdale.}

Elevation 5,634 feet. Omaha 496 miles.
the Laramic Range-formerly called the Black Hillsand farther south, 60 miles away, is visible in ordinarily clear weather the snow-covered top of Longs Peak (altitude \(14,25.5\) feet) and other high mountains of the Front Range of the Rockies.

Durham and Archer are stations between Hillsdale and Cheyenne.

\footnotetext{
\({ }^{1}\) The Arikaree formation underlies a lage part of western Nebraska and eastern Wyoming and is widely distributed in neighboring regions. These deposits appear to have been spread out by streams over the low-lying plains. No place in North America now exhibits the physical conditions supposed to have existed in Nebraska and Wyoming when these sediments were being deposited, but similar conditions have been reported as prevailing now in central South America, where
every year a plain of some 60,000 square miles is converted during the rainy season into a labyrinth of lakes, ponds, swamps, channes, and islands. On these islands the animals gather and great numbers of them perish. Large quantities of fossil bones are found in small areas in the White River beds. These areas have been called "fossil graveyards" and are supposed to represent "concentration camps" of Tertiary time similar to the isles of refuge of the present day in South Ameriea.
}

The capital of Wyoming, Cheyeme (see sheet 9, p. 50), is 516 miles west of Omaha and nearly a mile higher. It is rich in memories of the "Wild West," memories which its inhabitants

\section*{Cheyenne.}

Elevation 6,058 feet. Population 11,320 . Omaha 516 miles. delight in perpetuating, for every year they hold one of the most picturesque gatherings in the country, known as "Frontier Days Celebration," at which Indians, cowboys, and plainsmen from all parts of the West, from Canada (1) Texas, gather for "broneo busting," steer tying, Indian dances, and the exhibition of all the unique and characteristic features of frontier life. And here gather from far and near spectators to see these performances.

Fort Russell, one of the larger Army posts, may be seen to the right, north of the railroad, as the train leaves Cheyeme. The city is supplicd with water from reservoirs fed by springs that issue from the granite of the Laramic Mountains in Crow Creek canyon. Three miles east of the city the Lnion Pacific crosses the Chieago, Burlington \& Quincy Railroad, and a mile west of it the train passes under the tracks of the Colorado \& Southern. A littla farther west, at Corlett, a branch turns south from the main line, rumning to Denver, where the westbound traveler can comert with the Denver \& Rio Grande Railroad. \({ }^{1}\)

From Cheyenne the main line elimbs a long, graded incline formed by the Arikarce beds, which extend far up the slope of the Laramie Mountains, where they abut against the foothills of the older sedimentary rocks or overlap the croded edges of these rocks and the still older granite. (See fig. 7, p. 42.) The Arikaree and the underlying deposits were here probahly tilted to some extent after deposition, hut the large bowlders contained in them prove that the streams had a steep descent and were swift and powerful. The character of the Arikaree may be seen in the numerous cuts along the railroad and in the bordering bluffs of the valleys, which are plainly visible to the right, north of the incline. In these bluffs may be seen below the Arikaree the rocks of the Gering formation and of the White River group-the Brule clay and the Chatron formation-which contain fossil bones of Oligocene animals. \({ }^{2}\) The Brule clay may be distinguished from the train as long barren slopes just below the cliffs.

\footnotetext{
\({ }^{1}\) The branch from Cheyenne to Denver runs parallel with the Front Range of the Rocky Mountains, but at so great a distance that these mountains do not appear particularly impressive. It passes through a prosperous agricultural distriet in which are situated Eaton. Greeley, lirighton, and other towns. In this district the waters of the South Platte, the Thompson, the Cache la Pondre and other
}
smaller streams are diverted for irrigation, and from it great quantities of potatoes, beet sugar, canned fruits, vegetables, and farm and dairy products are shipped to market.
\({ }^{2}\) The Oligocene epoch seems to have been one of relative quiescence compared with the Eocene, which was chararterized by impressive volcanic activity and by the building of great mountain

\title{
GEOLOGIC AND TOPOGRAPHIC MAP
} ()VERLAND ROUTE

From Oruaba, Nebraskis, to Sun Framerico, C'aliformia

[NITED K゙TATES (iEOLOGICAL SURVEY

\section*{1915}

Eois gaddragge, shown in ine mao with a nome in parentatasis in in Wuer lett ismer is margest in setait on the \(U S G:\) Topapraph shet not inat name

The stations Corlett and Burie are pased between Cheveme and Otto.

From several places near Otto station good views of the Front Range of the Rocky Momntains may be obtained to the left (south). Longs Peak is plainly visible, as well as the mome massive and searedy less elevated momatains noth

\section*{Otto.}

Elevation 6,946 feet. Omaha 530 miles.
of it. Toward the right (north) the foothills catit of the Laramie Range form conspucuns ridges that are plainly risible from the train. They consist of sedimentary rockupturned to a nearly vertical position. These rocks ratuge in age
systems. The Oligocene formations are among the most widespread and most regularly distributed of the Tertiary formations of the Great Plains and cover a vast area in Nebraska and Wyoming. The sediments composing them were deposited by streams that meandered over low-lying plains and slowly built up the surface, much as the lower Mississippi is now building its delta or the Platte its flood plain, over which the train has just passed. Some of the old stream chamels can be recognized by the filling of consolidated sand and gravel.

The plains country of Nebraska and eastern Wyoming was low during Oligocene time and the divides between the streams were not high enough to prevent flooding during high water. The whole country was virtually a great flood plain on which accumulated the sediments that the rivers brought from the mountains. With these sediments occur beds of pure volcanic ash. which must have been carried by the wind or floated by the streams for long distances. The volcanoes that had been so active in western America during the Eocene epoch had not ceased their eruptions-indeed, they have not yet become entirely extinct, as is testified by the recent outburst of Lassen Peak. in northern Caliornia, although throughout later Tertiary and Quaternary time their fires have been gradually going out.

The lower Oligorene or Chadron furmation is oiten called the Titanotherium beds because it contains bones of extinct mammals of that name. The titanotheres tormed a comparatively short-lived
family and seom to have been confind almost entirely to North America. Thein remains are the most numerous and conspicuots fossils fomed in the bewer oligno cene beds in western America. Ther were clumsy lyntes of elephantine size having on the front of the skull a pair of great bony profuberances, whichalthough hornlike in form were probably not sheathed in horn. (See Pl. VII. \(D\), p. 41.) The head was long and large and oi fantastir slape. In its thiek heary bory and short. massive legs the titanothere resembled the modern rhinoceros. It was doubtless a sluggish, stupid beast. ior its brain was small in comparison with the size of its body. The brain "avity was only a few inches in diameter and was surrounded by thick bone, as ii to withstand shoeks in battle. The titanotheres were the most formidable animals of the time, and though, so far as known, there were then no carnivores capable of doing them serious harm, yet they seem to have disappeared suddenly from North America. Their bones are not found in strata above a certain geologic horizon. The disappearance of a race of animals from any locality or even irom the face of the earth does not necessarily require a long period of time. It is easily conceivable that the titanotheres were exterminated by some disease or that one of the physical changes which were so common in the West during Tertiary time made their lite conditions here muavorabie and drove them to some other region, in which their remains have not yet been discovered.
The animals of Oligocene time sern to have been abundant as well as saried in
from Carboniferous to Cretaceous; the rocks of the most prominent ridge seen toward the north are those of the Casper formation and the less prominent ridges are formed by hard strata in the red beds of the Chugwater formation (Triassic or Permian) and by the rocks here called the Cloverly formation, the upper part of which may represent the Dakota sandstone of eastern Nebraska. \({ }^{1}\)
kind. They had a somewhat more modern aspect than the animals that preceded them, for the processes of evolution had been active, and some of the primitive animals of Eocene time had developed into forms more nearly like those with which we are fawiliar now. Others seem to have left no descendants. Great numbers of Oligocene fossils have been found, and the life of the time is probably better known than that of any other epoch of the Tertiary period. Among the characteristic animals of this epoch were primitive forms of rhinoceroses, peccaries, ruminants, camels, insectivores, and opossums. Some of the creodonts or flesh eaters of Eocene time had developed into true carnivores, including many forms of both doglike and catlike animals. The sabertoothed eats which later developed into the saber-toothed tiger, one of the most formidable enemies of primitive man, first appeared in the Oligocene.
The horses whose history began with the diminutive four-toed Eolippus continued in the Oligocene, where they are represented ly many three-toed forms which were about as large as sheep. Hoglike animals were rather numerous, and although many of them were smaller than the modern swine some of them were very large. One of these, Archeotherium ingens (see Pl. VII, C, p. 41), was a formidable beast with curious protuberances on its hearl, the use of which is not known. Rhinoceroses similar to those now found
in Africa and India lived in western America, and other rhinoceros-like animals known as anymodonts were abundant, but rhinoceroses did not reach their culmination in America until the Pleistocene epoch.
In addition to these animals of more modern appearance there were many that were so unlike anything now living that it is not possible to designate them by any common names. Among these are the animals of the protocerine group, of whose history little is known. They seem to have appeared suddenly in North America in Oligoeene time and disappeared from this continent during the early part of the Niocene. They were deerlike creatures about the size of sheep. The head of the male was grotesquely ornamented with short bony protuberances and large scimitar-like tusks. Each front foot had four toes and each toe had a hoof like that of a deer or antelope. The supposed appearance of these curious animals is indicated in the restoration of one of the forms (Protoceras celer) reproduced in Plate VII, \(E\).
\({ }^{1}\) The table on page 41 shows the geologic formations exposed in the vicinity of the Laramie Mountains near the Union Pacific Railroad in the order of their age, the oldest at the bottom and the youngest at the top. The position of these formations in the complete geologic time scale may be ascertained by comparison with the table on p. 2 .

I).
\(E\)

\(F\).

\section*{ROCKS OF MIOCENE AGE AND RESTORATIONS OF ANIMALS THAT} LIVED IN NORTH AMERICA DURING THE MIOCENE EPOCH.
A. SHORT-LIMBED RHINOCEROS, KNOWN AS TELEOCERAS, AN ANIMAL ABOUT 5 FEET HIGH (AFTER OSBORN); \(B\), (a) MIOCENE MASTODON (TRILOPHODON PRODUCTUS AND (?) PLEISTOCENE ELEPHANT (ELEPHAS IMPERATOR), AN ANIMAL NEARLY 15 FEET HIGH AFTER OSBORN); \(\quad\) ': MOROPUS ELASTUS, AN ANIMAL SOMEWHAT LARGER THAN THE MODERN HORSE AFTER SCOTT); \(I\), A FOUR-HORNED DEER (SYNDYOCERAS COOKI), ABOUT THE SIZE OF THE MODERN DEER (AFTER SCOTT); \(\Gamma\), GIGANTIC GIRAFFE-CAMEL ALTICAMELUS ALTUSI ABOUT 15 FEET HIGH (AFTER SCOTT, \(\because\); MIOCENE BEDS , ARIKAREE FORMATION RESTING UNCONFORMABLY ON OLIGOCENE BEDS (BRULE CLAY, IN PAWNEE BUTTES, COLO

1 B.

I).

ROCKS OF OLIGOCENE AGE AND RESTORATIONS OF ANIMALS THAT LIVED IN CENTRAL NORTH AMERICA DURING THE OLIGOCENE EPOCH.

A, JAIL ROCK, NORTH OF SIDNEY, IN WESTERN NEBRASKA, THE LOWER PART OF WHICH CONSISTS OF BRULE CLAY; \(B\), AN AMERICAN RHINOCEROS (AFTER OSBORN); \(C\), "GIANT PIGS," 3 OR 4 FEET HIGH (\(A F T E R ~ S C O T T\)); \(I\), TITANOTHERES, ALMOST AS LARGE AS THE MODERN ELEPHANT (AFTER OSBORN); \(E\), PROTOCERAS CELER, ANIMALS THE SIZE OF THE MODERN ANTELOPE (AFTER SCOTT).

Succession of the rock formations exposed along the Uwion I'acific Railroud east and wre: of the Laramic Mountains.
\begin{tabular}{c|c|c|c}
\begin{tabular}{c}
Period and \\
system.
\end{tabular} & Epoch ant series. & Nast of Laramie Mountains. & \begin{tabular}{l}
West of Laramie Monntains. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

On reaching the foothill: the train passes through a cut made in gray massive limestone and red quartzose sandstone of the Casper formation, which inclines steeply toward the east. Another aspect of this formation may be seen to the left (south) of the railroad, where it makes a steep cliff above the granite against which it is inclined. On Mesa Mountain, a flat-topped table-land which may be seen to the right, the Casper formation is nearly horizontal and forms the top of the mesa.

The limestone of the Casper formation at Granite Canyon furnished lime that was used by the railroad during the period of construction. This limestone is nearly pure calcium carbonate (98 per cent \(\mathrm{CaCO}_{3}\)), and on Horse Creek, 20 miles farther rorth, about 55,000 tons is quarried every year to be burned for lime at the beet-sugar factories in eastern Colorado, where it is used in refining the sugar.

Figure 7.-Tertiary sand and gravel overlying the truncated eroded edges of older rocks and forming the approach to the Laramie Mountains between Cheyenne and Granite Canyon utilized by the Union Pacific Railroarl.

The ridge up which the train climbs in approaching the mountains is a remnant of the broad plain that once extended uniformly along the mountain front. The streams have made relatively little impression on the hard mountain rocks but have eroded away large parts of the soft Arikaree and other Tertiary beds of this plain, leaving the ridge as the one practicable route by which the railroad can ascend to the high table-land at the top of the Laramie Range.

The Tertiary sands and gravels of the ridge up which the train approaches the mountains form a thin covering over edges of older formations that range in age from Carboniferous to Cretaceous. The edges of the older formations are truncatedthat is, the originally flat strata were tilted and their edges cut off obliquely by erosion betore the Tertiary deposits were laid down upon them. Such a relation is called an angular unconformity. The attitude of these older rocks is known from exposures in the valleys both north and south of this ridge, and the relations are shown in the accompanying sketch section (fig. 7). The oldest sedimentary formation here is the Casper. consisting of gray to white limestone and red sandstone. Neat is the Chugwater formation,
which consists of red sandstone, red sandy shale, thin beds of limestone, and thick beds of gypsum. Unconformably on this lies the Sundance formation, consisting of sandstone and shale and containing marine fossils that denote Jurassic age. This is followed with apparent conformity by the Morrison formation, which is noted for its huge fossil reptiles. Upon the Morrison, and apparently conformable with it, lies the Cloverly formation, consisting of two sandstones separated by shale. The upper sandstone is probably equivalent in age to the Dakota sandstone and is therefore the base of the Upper Cretaceous series. Above the Cloverly in conformable succession lie the Benton shale, the Niobrara limestone, the Pierre shale, and the Fox Hills sandstone.

This easy approach to the mountams was discorered in a peculiar manner. For more than two years engimeers had searched in vain for a practicable grade be which the railroad might reach the summit of the range. On one of their excursions in the valley of Crow Creek they discovered Indians between them and their escort of momnted soldiers. In their attempt to find a point where the cavalry could see their signals for help the engineers reached the ridge, and in order to get to a place of safety they traveled down the ridge and found that it joined the plain cast of the mountains without a break. This was just such a grade as they had been looking for, and further exploration showed that it was suitable for the road.

The station at Granite Canyon is built on granite porphyry, a crystalline rock of igneous origin. This particular granite porphyry

Granite Canyon.
Elevation 7,312 feet. Omaha 535 miles. is the oldest rock yet encountered on this route, being of pre-Cambrian age. West of the station is a steep slope cut in the Brule clay, which lies directly on the granite porphyry. This is the westermmost exposure of this formation along the Union Pacific line. About 4 miles west of the Granite Canyon station, near Ozone, the road crosses a narrow strip of dark-colored granite gneiss, intruded ages ago into the older crystalline rock which constitutes the core of the Laramie Range.

From many points in the vicinity of Buford good views may be obtained of the high peaks of the Rocky Mountains fir away to

\section*{Buford.}

Elevation 7,858 feet. Omaha 543 miles. the left (south) and of the relatively low but rugged Sherman Mountains, a part of the Laramie Range, to the right. Two prominent points seen to the north are called Twin Mountains and are celebrated as one of the strongholds of the notorious desperado slade.

At Buford is the quarry that has furnished ballast for the Union Pacific from Omaha to Rock Springs, Wyo., a distance of more than 800 miles. The quarry is in the crystalline rock of the Laramie Range, known as the Sherman granite. \({ }^{1}\) At Buford this granite has

\footnotetext{
\({ }^{1}\) The Sherman granite forms a great mass intruded into older rocks in preCambrian time. It is normally a cuarsegrained rock composed chiefly of pink \({ }^{\circ}\) feldspar, glassy-looking quartz, black hornblende, and mica, which in mass give it a spotted appearance. According to report it contains some gold at Buiord but not enough for profitable extraction. It shows considerable variation in texture, color, and composition. One of the commonest varieties is cuarsely porphyritic, the feldspar standing out in crystals 1 to 2 inches in length. Where the Union

Pacific Railroard crosses Dale (reek, west of Sherman, the granite is rich in epidote. a green mineral, which together with the red feldspar imparts to it a mottled red and green color. Although hard when unaltered the Sherman granite breaks up readily into a coarse gravelly soil under the influence of heat, cold. and the action of water, so that it forms smooth, round hills. Where the rock is firm it weathers along widely spaced joints and forms heap: of rounded bowlders, many of which may be seen from the train (Pl. V11I, A), patticularly west of Buiford.
}
weathered to a depth of 50 feet or more. At the quarry the rock is loosened by heavy charges of explosive, which shatter it to small fragments, and it is then loaded on the cars by steam shovels. This quarry is said to have furnished about 10,000 carloads of ballast evcry year for the last 14 years and is still in active operation. Ballast is thus obtained at a cost of about 6 cents a ton, whereas the average cost of crushed rock used for railroad ballast is 49 cents.

Sherman, so named in honor of Gen. W. T. Sherman, is the highest point on the Laramie Range reached by the railroad. It is claimed that from this point on a clear day may be seen

\section*{Sherman.}

Elevation 8,009 feet. Population 115.* Omaha 547 miles. Pikes Peak, about 165 miles, and Longs Peak, 60 miles to the south, and Elk Mountain, 100 miles to the west. The railroad was originally built a few miles north of its present location and crossed the divide at an altitude 237 feet higher than at present. On this old line a great stone monument was erected in honor of Hon. Oliver Ames and his brother Oakes, to whose energy and perseverance was largely due the construction of the Union Pacific Railroad.

The road here traverses the relatively flat summit of the Laramie Range, on what has been described as the Sherman peneplain. \({ }^{1}\) Along the track here and elsewhere in the Laramie Mountains there are numerous board fences or windbreaks. The snow drifts badly in the winter, and these fences prevent drifts from forming on the track.

Dale Creek is a point on the new line that crosses Sherman Hill at a point 237 feet lower than the original crossing. This change not only saved the expense of climbing the heavy grades

Dale Creek.
Elevation 7,918 feet. Umaha 550 miles. but did away with the famous Dale Creek Bridge, which was 650 feet long and 135 feet high. It also involved some notable feats in engineering. Along the new line there are many deep cuts in which the Sherman granite

\footnotetext{
\({ }^{1}\) The uniform fineness and approximately uniform thickness of the Cretaceous sedimentary rocks on each side of the Laramie Range indicate that they once extended over the area now occupied by these mountains - in other words, that the mountains did not exist during Cretaceous time. At the close of that period the region was uplifted and the Cretaceons as well as the still older stratified rocks were steeply upturned on the eastern flank and slightly upturned on the western flank of the monntains. Then followed a long period of erosion during the Eocene epoch, when the sedimentary rocks were worn away from the top of the mountains, except where they were preserved by being infolded within the gran-
ite, and the crystalline rocks underlying them were eroded to a nearly level surface, or peneplain.
At the close of the Eocene epoch the range was again elevated and renewed erosion attacked this planed surface, deriving from it in part at least the material of the Oligocene and Miocene deposits that border the range on the east. These deposits could not all have been derived from this area, however, for in some places they extend over parts of this peneplain. The present irregularities of the plain were probably produced in large measure by late Tertiary or Quaternary erosion, which developed the canyons and removed large parts of the Oligocene and Miocene deposits.
}

A. VIEW NEAR DALE CREEK STATION, WYO., SHOWING CHARACTERISTIC WEATHERING OF THE SHERMAN GRANITE.

B. SMALL "SODA LAKE" ON THE PLAIN NEAR LARAMIE, WYO.

The bed of the "lake," which contains water only in wet weather, is when dry covered with a white incrust3tion of salts, mostly alkali, left by the evaporation of the water.

NATURAL MONUMENTS ON THE PLAIN NEAR RED BUTTES, WYO., ERODED FROM RED SANDSTONE OF THE CASPER FORMATION.
may be seen to adrantage，and a tumel is driven 1,800 feet through a spur of the same granite 3 miles west of Dale（＇reek．One hill near this creek，known as Gibraltar（＇one， 100 leed high above the grade line，was drilled and loaded with about 1,000 kers．of batck powder and 1,000 pounds of dyamite，and on July 4,1900 ，this charge was exploted，blowing out the whole hill．The cuts are equaled by some of the great fills．The fill armoss Dald．（reek is 900 feet long and 120 feet high in its deopest part，and jofo，ofo conbic yards of roek was used in construeting the embankment．

The name of the next station，Hermosat，which is spanish for beall－ tiful，seems appropriate，as may be readized by a glance to the loft，

\section*{Hermosa．}

Elevation 7，862 feet． Omaha 554 miles． toward the west．Aeross the broad Laramio Basin， which the road enters at this point，the mountams rise in rugged grandeur，and near by may be seen natural monuments carved from red sandstone in many forms．Some of these are illustrated in Plate ld．

From a point near Hermosa the road has two lines to Laramie． The westbound trains run by way of Red Buttes，and the eastbound trains come from Laramie over an eavier grade by wat of Forelle and Colores．Red Buttes is little more than a section house and takes its name from the natural monuments or buttes of red sandstone that are numerous in this vicinity（ Pl ．IX）．From

Red Buttes．
Elevation 7,300 feet． Population 110．＊ Omaha 564 miles． Hermosa to Red Buttes the route has lain on gently sloping red beds of Carboniferous age，consisting of the Casper formation，which was seen east of the mountains；the Satanka shale，made up of red shate and gypsum；and the Forelle limestone．These strata are ovedlain in some places by deposits of gravel，and at one place，a mile sout heast of Red Buttes station，by gypsite．（For description seep．48．）

About a mile south of Red Buttes is a deposit of gypsum， 20 or 30 feet thick，which is being manufactured into cement plaster or impure plaster of Paris．It is of the form known as rock gypsum and is a
\({ }^{1}\) The Laramie Basin as usually defined is 90 miles long and 30 miles in maximum width and has a surface elevation of 7,000 to 7,500 feet．It is a hollow whose form is due to the general structure of the rocks that underlie it．It is overlooked by the Laramie Mountains on the east and the Medicine Bow Mountains on the west． These monntains are the northward con－ tinuation of the Rocky Mountain ranges of Colorado，the Laramie representing the Front Range and the Medicine Bow the north end of one of the inner ranges of the Rocky Mountains．The basin was formed
by the warping and tilting of the rooks during the several periods of upheaval． and has later been modified by erosion． The big Hollow，a depression in the gen－ eral basin a few miles west of Laramie．is 9 miles long， 3 miles wide，and 200 feed deep．Other similar depressions are Big Basin，northwest of Laramie，Cocper Lake Basin，and many smaller hollows orru－ pied by alkali lakes．The hasin is partly drained by Laramie River，which crosses the Laramie Mountains through a deep） ravine and finally joins North Plattc River．
part of the Forelle formation. The most extensive gypsum deposits of this region occur at Red Mountain, 25 miles farther southwest.

Other natural products of commercial importance in this region are rolcanic ash, \({ }^{1}\) bentonite, \({ }^{2}\) and soda. \({ }^{3}\)

On the track used by eastbound trains between Laramie and Hermosa is a station called Colores, from the highly colored rocks of the Carboniferous formations that are exposed near

\section*{Colores.}

Elevation 7,637 feet. Imaha 560 miles. be. The eastbound trains pass orer these red rocks for about 10 miles. The rocks contain water under pressure, and many large springs issue from them along the foothills. A spring near Colores furnishes water to fill a 4 -inch pipe. Another spring east of Laramie furnishes the city supply- \(3,000,000\) gallons a day. About 4 miles south of the eity -pring there is another large spring, which supplies a fish hatchery.

Toward the southwest, across the Laramie Basin, good views are obtained of the Medicine Bow Mountains, which constitute the north end of one of the main ranges of the southern Rocky Mountains and are so high that they are covered with snow during much of the year. Jelm Mountain, the nearest of this group, is a mass of ancient schist
\({ }^{1}\) Beds of volcanic ash occur about 4 miles south of Red Buttes. They are reminders of the volcanoes that were formerly so active in the Rocky Mountain region, but the location of the particular volcanoes that furnished this ash is not known. The material is pure white, soft, and fine grained. It occurs in beds that are comparatively young-that is, Tertiary or Quaternary. (See table on p. 2.) Tolcanic ash is sometimes used as an abrasive, for scouring, polishing, or cleaniny kitchen ware and other articles.
\({ }^{2}\) About 6 miles west of Red Buttes, on the northwest shore of Creighton Lake, is a bed of bentonite, 3 or 4 feet thick, which appears as a white band in the black Benton shale, from which bentonite derivesits name. Bentonite is a variety of - lay used chiefly to give body and weight to paper, but to some extent in a dressing for inflamed hoofs of horses, in antiphlogistine (a proprietary remedial dressing), and as an adulterant of candies and drugs. It has notable powers of absorption, taking up about seven times its own volume of water. It absorbs twice as much glycerine as can be absorbed by diatomareous earth, and for this reason has been suggested as a substitute for that material
in the manufacture of dynamite. Other beds of bentonite occur farther west. It was first mined in this region in 1888, but with the closing of the western paper mills in 1905 its production practically stopped.
\({ }^{3}\) Soda lakes occur near the Union Pacific line in Laramie Basin and at many places farther west. The waters of these lakes are strongly charged with sodium sulphate, and along their edges lie thick deposits of this salt that has been precipitated irom the water. (See Pl. VIII, \(B\), p. 44.) Three of these deposits were worked prior to 1895 . The lakes lie in depressions in Cretaceous shale that contains a rariety of salts, some of which were derived from the sea water in which the shale accumulated. Waters issuing as springs from this shale take the salts into solution. and rain falling on the surface of the shale dissolves them and carries them into the lakes. Water can escape from the depressions only by evaporation, so the salts accumulate in them. The soda deposits near Laramie have received more attention than any similar deposits in Wyoming. They cover about 60 acres, and the soda ranges in thickness from 1 foot to 16 feet.
and granite greiss brought up by faults and comtains somu mincrals of special interest, among which arr himuth oro, allanite, and sperrylite. \({ }^{1}\)

Laramie is the second eity in propulation in Troming and is the center of large stock and manufacturing interests. The linisersity of Wyoming, including the state Agricntural (oollege,

\section*{Laramie.}

Elevation 7,115 feet. Population 8,2:37. Omaha 573 miles. the School of Mines, the Enited States Experiment Station, the Wroming State Nomand sehom, the Wyoming State School of Musir, and the (luiversity Preparatory School, is located here. 'Ther eity, as well as the river, the mountain range, and the comety, derives its name from Fort Laramie, which stands at the month of Laramie River. This most fumous fort on the old Ovelland Trail was named directly or indirectly for Jacques La Ramie, a Frencha fur trader of the early days. The old maps show the river as La Ramies Fork. Stansbury, Sublette, Bonneville, Parkman, and many others have described the old fort in its various stages from the small trading outpost of a fur company to a United States Army post.

Laramie was the home of Bill Nye, and here he founded the Boomerang, a journal of somewhat fitful existence, and wrote the articles for the Cheyenne and Denver papers that brought him into prominence as a humorist. It is worthy of notice that some 30 years ago Nye and James Whitcomb Riley published a railway guide. "What this country needs," they say, "is a railway guide which shall not he cursed by a plethora of facts or poisoned with information. In other railway guides pleasing fancy, poesy, and literary beauty have been throttled at the very threshold by a wild incontinence of facts, figures, and references to meal stations. For this reason a guide has been built at our own shops and on a new plan. It will not permit information to creep in and mar the reader's enjoyment of the scenery."

The city of Laramie rests on the red beds of the Chugwater formation, which may be seen at several places north of Red Buttes and are conspicuously exposed just north of the city. Cement plaster is

\footnotetext{
\({ }^{1}\) Bismuth, which is used extensively in the manufacture of drugs and of alloys that melt at low temperatures, occurs in Jelm Mountain in the form of carbonate and oxide. Sperrylite, or platinum arsenide (\(\mathrm{PtAs}_{2}\)), has been found at Centennial, near Jelm Mountain. It is very rare, and this is the only place where it occurs in quantity so large that serious attempts have been made to work it for platinum. At Albany, in this same region, is found allanite, a black mineral
}
containing cerilum, yttrium. thorium, and other rare elements. In some places the ore is nearly pure allanite; in others it contains numerous impurities. ('erium. which is now obtained as a by-product in the reduction of thorium from monazite, is alloyed with iron to make the "sparker" in the modern "flint and steel" mechanisms used as gas lighters. Cerimm oxide is used sparingly in glass making to produce clear slase free from any mreenish tint.
manufactured from an impure gypsum known locally as gypsite, \({ }^{1}\) which oceurs near the city. Pressed brick are made from the Benton shale for constructing buildings in the city and elsewhere.

Beyond Laramie is the station Bona.
The red beds of the Chugwater formation extend as far north of Laramie as Howell, although for most of this distance they are not visible, being covered with beds of gravel. West

Howell.
Elevation 7,113 feet. Omaha 580 miles. of Laramie is a low ridge where the Morrison (see pp. 41,42) and Cloverly formations are exposed. The railroad passes over them just north of Howell, but they are covered with surface débris and can not be seen from the train. About 2 miles north of Howell and also at Wyoming the traveler passes through deep cuts in the Benton shale. \({ }^{3}\)

From Wyoming station the train passes northward over the Niobrara limestone, which, however, near the track is covered with beds of sand and gravel. Outcrops of it appear as

Wyoming.
Elevation 7,138 feet. Population 194.* Omaha 584 miles. light-colored bands southwest of the station on both sides of the river. Northwest of this station the road erosses a thick deposit of marine shale of middle Upper Cretaceous age, but the shale is here covered with the alluvial deposits of Laramic Valley.

At many places in this region during the summer there are large fields of gorgeously colored wild flowers. In some places the plain is colored red with the blossoms of a variety of loco weed, which is poisonous to horses, and in others large areas are covered with the deep-blue blossoms of the larkspur. Evening primroses are also
\({ }^{1}\) Gypsite is fimely divided gypsum mixed with other matter, which does not interfere with its use for cement plaster. It is baked in ovens, its calcinm sulphate remaining as a dry powder. which is mixed with water in plastering and then becomes hard.
\({ }^{2}\) The Benton formation in Nebraska consists of three members, two oi shale and one of limestone, which are recognizable as far west as the east slope of the Laramie Mountains. West of the momtains the limestone is represented loy shale indistinguishable from the other members. Near the base of the Benton on both sides of the mountains there is a hard sandy shale, called the Mowry, which weathers almost white and which contains numerous fish scales. Higher in the Benton is a sandstone, about 50 fect thick in the Laramie Basin, which seems
to correspond to the Frontier formation of localities farther west. At some places indications of oil have been found in this sandstone.

In general there is no material difference in the Benton on opposite sides of the Laramie Mountains, either in physical character or in age, so that it is believed that when these ljeds were formed the Laramie Mountains did not exist and that the sea in which the sediments accumulated extended uninterruptedly over the area now occupied by the mountains. Some differences in nomenclature result from the fact that two standard geologic sections have comeinto use-one for the general region east of the mountains and the other for the region west of them. (See p. 41.) The Laramie Basin is in the transition zone between the two regions.
abundant, but they seem io prefer the eravelly shopes at the side of the road.

For a few miles north of Laramie the tram follows mone or bess closely Laramie River, here a placid meandering stream. Not many miles farther down its comse, to the mom the river has colt spramed. across the main Laramie Range, below which it flows ont into the Great Plains country and emptics into the North Plattr. A laren storage reservoir has been built near the mommatns, and hore the flood waters of the river atre stored to irrigate the Whathand tradt, east of the mountains. This imgalion peojot was put through under tho Carey Aet by its author, ex-somator ('arey, latore exvernor of Wyoming. Mr. Carey showed that he not only combld draft a law but could operate under it, for the Wheathand projoed is said to be very successful.

Just after crossing Laramic River, hefore reaching Boster, the route leaves the marine Cretaceous shake and enters an aroa underlain by the sandstone of the Mesaverde a eroal-bearing

\section*{Bosier.}

Eleration 7,077 feet.
Population 264.* Omaha 592 miles.
formation of Upper Cretaceous age. The Mesaverde is of great economic importance west of the Rocky Mountains because it contains valuable beds of coobl. This sandstone near Bosler is solt and has disintegrated so deeply that its character can not be readily discerned from the train. It is well exposed, however, at many places a little farther west.

Near the station of Cooper Lake a small alkali lake surrounded with white incrustations of soctium carbonate is visible near the track, but Cooper Lake itself can be seen only from a point several miles west of the station. This lake is about 4 miles long and 2 miles wide and oceupies the lowest part of a broad depression. Like many of the smaller lakes of the Laramie Basin it has no outlet, and the considerable quantities of water entering it through the two creeks that head in the Medicine Bow Mountains to the south escape only by evaporation. For this reason the size of the lake is variahte, depending on the balance between rainfall and evaporation.

From Lookout station westward to Medicine Bow the railroad is relatively new. The roarl was originally built north of the line now operated, crossing Rock River about 10 miles northeast of the present crossing and following that river north of Como Bluff to Medicine Bow. The new route shortens the line 20 miles.
The station at Lookout is built on a sandstone that lies unconformably on the Mesarerde. About a mile west of the station this rock is exposed in railroad cuts and consists of soft yellow sandstone
\(38088^{\circ}\)-Bull. 612-16-4

\section*{Lookout.}

Elevation 7,120 feel. Omaha 600 miles.

\section*{Cooper Lake.}

Elevation 7,031 feet. Omaha 597 miles.
containing pebbles of quartz and other varieties of hard rock ranging from grains of sand to pebbles 2 inches in diameter. In a cut about \(1 \frac{3}{2}\) miles east of Harper this conglomeratic sandstone \({ }^{1}\) (see fig. 8) rests with uneren base-that is, unconformably-on a yellow shaly sandstone that contains marine shells.

The section house called Harper (see shect 10, p. 62) is built on a sandy shale in which have been found numerous fossil shells of Cretaceous marine mollusks. In the deep rock cut

\section*{Harper.}

Eleration 7,073 feet. Omaha fo6 miles. just west of the station may be seen a bed of coal about 3 feet 6 inches thick. This coal thickens toward the southwest, where it has been mined to some extent for local use.

Figure \(\varepsilon\) - - In unconformity in a railroad cut about 4 miles west of Lookout, Wyo., showing conglomeratic sandstone (A) of Tertiary age resting on marine shaly sandstone (B) of Cretaceous age.

Pine Ridge, so named because of a few scrubly piñons, or nut pines, that grow on the sandstone cliffs, consists of a light-gray cliffmaking sandstone that forms a prominent northward-facing ledge and belongs near the base of the Mesaverde formation. West of the cut are two prominent ridges formed by large reddish-brown limestone concretions that contain great numbers of marine shells. These are in the transition beds between typical Steele shale and the

\footnotetext{
\({ }^{1}\) The: conglomerate contains near the base sandstone concretions in which have been found fossil plants that seem to indicate Tortiary age, although these rocks have usually been regarded as a part of the Montana group of the Lpper ('retaceous. These plants indicate that here, as elsewhere in this region, Tertiary beds
}
lie unconformably on older rocks. The significance of this relation is discussed in the footnote on p. 2 and also in the footnote on p. 42. The conglomerate caps the hill south of Harper station, where it rests on rocks containing marine shells, but the contact is not easily determined owing to surface débris.

(HOROAC AND TOPO氏iRAl'HIC MAP
()VERLAND ROUTE

From Omaha, Nebraska, to san Francisco, California

 thonas then mation andected with the acolstance or thene cempatides
CNITED STATEA (BEOLOMICAL SCRVEI ATEURAE UTIS SMITH, DIRECTUR
 1915

massive sandstone of the Mesarerde formation hat lies on it. Thuse transition rocks become gradually more sambly tonard the west, and west of Rawlins they form a part of the Masamed formation.

Pine Ridge is the divide betwen the Lammin River dranage and
 through the Laramic Mountains and conter Pable River at Font Laramie, So miles to the northeast. These of the westarn stope flow through Rock River and Medieme Bow River th the Platte and theme through the Seminoe Mountains around the merthemed of the Laramic
 of the eastern slope at Fort Lamio.

Just before reaching Rock kiver station the train monses the riter of the same name, and groded expestres of the steme

\section*{Rock River.}

Elevation 6,904 fect. Population 123. Omaha 612 miles. shate may bee seen in the hoffs in the morth hank. Northesest of the town the railmad patsee aver a broad plain formed on this soft shate.
About 10 miles from Rock River the road arostes : low, sharp hogback of Niohrara linestene. This chalk w-white bed, 5 to 10 feet thick, forms arese because it is harder thath the shate above and below it.

Ridge takes its name from the prominent hoghank ridere north of the station, formed by a hard sandstone in the Benton shate. The railroall parallels this ridge for a mile or more and then

\section*{Ridge.}

Elevation 6,692 feet. Omaha 623 miles. cuts through it west of the station. The lown part of the Benton shale is well wposed nordh of this sambstone ridge, in the eenter of the antichane formed by the arching of the strata. The robite traverses this shalk for about a mile before recrossing the sandstone and the Niobrara limestone amd finally returns to the Stecle shale in the northern limb of the areh.

Near Ridge the sandstone disappears becanse the fold that extemes westward from the Laramie Range here planges beneath the surface. Como Bluff, which lies north of Ridge station and which constitutes a part of this fold, consists of the Cloverly formation, the lower conglomeratic portion of which forms the erest of the huff becemse of its superior hardness and forms also the long southward slope seen to the right from the train. Underneath this conglomerate oweur in descending order the pink and blue shales of the Morrison formation, which, because of the numerous shadesof color, arre often called the varicerated beds; the Sundance formation, containing numerous vertobrate and invertebrate fossils which prove its Juassic agre; and the (hugwater red beds.

The Morrison formation is probably the most interesting of those exposed here, because of the fossil bones of hage reptiles that it comtains. The dinosams are described below br C. W. Gilnowe, of the

Tnited States National Museum. \({ }^{1}\) The largest animals that have ever been found lived at a time when reptiles were the ruling types of animals in the sea, on the land, and in the air. Flying reptiles
\({ }^{1}\) (Como Blaff is classic ground to those interested in the fossil remains of animals that inhabited this region long ages ago, for it was here that the first dinosaur bones were liseovered in the Rocky Mountain region. In 1876 Mr . W. H. Read, now a professor in the University of Wyoming but then in the employ of the Union Pacific Co., found in the bluff above the now abandoned station of Aurora a large petrifierl limb bone, which he sent to Prof. O. ('. Marsh, of Yale University. Prof. Marsh at once recognized the fossil as belonging to some unknown extinct animal and immediately enlisted the services of Mr. Reed. Collecting was actively carried on here for a period of ten years or more, and as a result of this work Prof. Marsh was alile to publish the remarkable series of restorations of dinosaurs which appeared from time to time in several publications.

So famons did these fossils become that in 1899 the ofhcials of the Union Pacific Railroad invited the geologists of the country to visit the places where the bones were found. An expedition consisting of geologists from universities and museums in many parts of the United States visited Como Bhuff, the Freezeout IIills, and other famous fossil localtties. So well known are the bone beds at Como Bluff that some have called the beds the Como formation. However, in the same formation at Morrison, Colo., similar bones were found, and the formation was named Morrison-a name which is now generally accepted. Some of the dinosaurs were the largest land animals that ever walked the earth, and some were very diminutive. They differed greatly in size, shape, structure, and habits. Some were plant eaters; others fed on flesh. Some walked on four feet; others with small, weak fore limbs walked entirely upon the strongly developed hind legs. Some had reptile-like feet; others were bird footed. Some had toes provided with long, sharp claws; others had flattened hoof-like nails. There were di-
nosanms with small heads and others with large heads. Some were large and cumbersome; others were small, light, and graceinl and so much resembled birds in their structure that only the skilled anatomist can listinguish their remains. Some of enormons size were clad in coats of bony armor, which gave them a most bizarre appearance.

The largest herbivorous or plant-eating dinosanr whose fossil remains have been found in Como Bluff was the huge Brontosaurus, or thunder lizard, as it was called by Prof. Marsh. It was 70 feet long, stood 16 feet high at the hips, and had a long tail, an equally long neek, and a head that was only a little larger than that of a horse. The weight of such a creature has been variously estimated at 18 to 20 tons. This animal donbtless lived on the luxuriant tropical vegetation, but how its enormous bulk could be sustained by such foorl as could pass through its ridiculously small mouth has caused much wonder. It is not certain whether the name thunder lizard was given to it becallse of its size or because of the large sum-over \(\$ 10.000\) which Prof. Marsh spent in excavating and preparing it.

Some dinosaurs that are even larger than the brontosaur have been found more recently. A Diplodocus now in the Carnegie Museum in Pittsburgh had the enormous length of \(84 \frac{1}{2}\) feet. The size of the fossil bones is indicated in the accompanying figure 9 .

At the time these animals flourished the Rocky Mountain region was a low, nearly level country, covered with tropical vegetation, with many wide, shallow streams and swampy areas, thus furnishing a congenial place for these sluggish swampinhabiting creatures to wade lazily about or float in the water, for it has been deemed improbable that the enormous bulk of some of them could be sustained without lateral support such as would be obtained in water.

One of the most striking of the vegetarians of this period was the Stegosaurus,

1. AN ARMORED DINOSAUR (STEGOSAURUS

The bones of this animal, which was about 10 feet high, were found in the Murasun turmation.

B. A CARNIVOROUS DINOSAUR (ALLOSAURUS) PREYING ON ONE OF THE HERBIVOROUS DINOSAURS.

A. A HORNED TOAD (PHRYNOSOMA CORNUTUM).

A modern lizard about 3 inches long that is armed like some of the ancient dinosaurs. Homed toads are distributed generally over western North America and are especially abundant on the dry sandy plains.

B. THE LAST OF THE DINOSAURS.

This restoration illustrates the appearance of Triceratops, showing the great bony frill over the reptile's neck. From painting by C, R. Knight, made under the direction of J. B. Hatcher.
similar to the one represented in Plato \(V,(\rho, 21)\), wore rommon, and the birds were so much like the reptiles that thoir remams ran scarcely be distinguished.
or plated lizard, so named becanse of the bony plates and spines with which its back wasadorned. (See I'l. X.A.) Stome of these plates, although very thin, wore from 2 to 3 leet in diameter. Thery were held in upright pesition in two parallel rows on each side of the middle resriom of the back, extending from the base of the skull well down on the tail. the ip, wi
may mot haw manired wher mancoi pow-

 have been umossary, for its Indicronsly diminmtive brain suggests a mentality in-
 presorvation. The wath of hath cajacily Wat compensaled to some extemt bey an anlargement of the spinal cord near the

Figure 9.-Leg bones of a dinosaur, showing size in comparison with that of a man.
which was armed with two pairs of long bony spines. In some individuals these spines were over 3 feet in length. All the plates and spines during life were covered by a thick, horny skin. The stegosaurs were about 20 feet long and stood about 10 feet high at the hips. The head was extremely small and lizard-like in shape, with a small brain, large eyes, and nostrils that indicate a considerable power oi smell. The great disproportion in length between the fore and hind legs, the smalt pointed head, and the skin ornaments oi plates and spines, made it so ugly that it
hips that was abme ton times as large as the brain.

The life of these peacrable pham-iending animals, however, was not always serene, for there lived at the same time dinosaurs whose powerul jaws armed with long, sharp tecth indicate that their food was fiesh. These animals ate called allesaure (see Pl. X. B.) That they iod ujen large brontosaurs and smatler animals of their kind is indicated ley the disenery of teeth of the camivorots species together with the bones of the of herthivorms contemperaries and of a skeleton of one

The stratified rocks in this region have been greatly affected by the disturbances that formed the mountains surrounding it. The region lies between the Laramie Mountain uplift on the east, the Medicine Bow uplift on the south, and the Seminoe and Shirley mountain uplift on the north. The strata between these mountains have been thrown into a series of folds and domelike arches, and in some localities profoundly displaced. A small dome that brings to the surface the Morrison and younger formations lies south of the railroad, but can not be recognized from the train.

The little town of Medicine Bow is well known to readers of Owen Wister's "Virginian" as one of the places where the cowboys played their laughable pranks, and the name of the novel

\section*{Medicine Bow.}

Elevation 6,560 feet. Population 127. Omaha 630 miles. has been taken by the hotel near the station. The name Medicine Bow is of Indian derivation, but how it came to be applied to the mountains from which the town takes its name is not certainly known. It is known, however, that some of the tribes annually risited the mountains that now bear this name to procure a certain kind of wood for their bows. In Indian talk anything that serves its purpose well is "good medicine," and according to report the mountains and streams where this timber was found became known as places where "good-medicine bows" were obtained.
The Flattop uplift, north of Medicine Bow, is a large, irregularshaped dome, truncated by erosion and broken or faulted, as it is called, on the northwest side since it was formed. Carboniferous rocks appear at the surface in the center, and around these the younger formations crop out in concentric rings. The Freezeout Hills form a similar dome but expose granite in the center. Some of the smaller domes from whose crests the Cretaceous formations have not been removed by erosion may contain important oil pools.

The town of Medicine Bow is on a rolling plain formed by the erosion of the Steele shale. In this plain are numerous depressions in which water accumulates in wet weather, and as they have no outlet the water becomes alkaline, because it takes up the salts dissolved from the shale and left in the basins when the water previously collected there eraporated. These basins are similar to the alkali lakes of the Laramie Basin and are formed on the surface of the same shale formation. Such intermittent lakes are found in many places in Wyoming.

\footnotetext{
of the herbivorous dinosaurs with bones scarred with tooth marks and grooves corresponding exactly to the sharp, pointed teeth of the allosaurs. The accompanying picture (I 'l. \(\mathrm{X}, B\)) depicts the remnants of such a prehistoric ieast.

The allosatur was a most powerful amimal, and skeletons over 20 feet long have
}

At Allen station, which is onty a section house, the railroald passes from the Steele shale to the Mesaverde formation, which is hew upturned and dips sigeeply boward the west. The

\begin{abstract}
Allen.
Elevation 6, 601 feet. Omaha 634 miles.
\end{abstract} softer layers, consisting of lowsetextured samdstome and shale, hawe been eroded, baving the hateder layms to form sharp-crested ridges that arr prominent athong the road for a distance of about 4 miles west of Allon. The Alsabrerde here has its full thickness, whereas at Pine Ridge the unper part had been eroded away before the Thertiary beds were laid down upen it.

Although the Mesaverde farther west is an mportant enat-tearing formation, little coal occurs in it here. I fewthinsemme lose hatn a fome thick crop out near the road, but none of eromomie valum have been found. The formation is characterized by iwn zones of hard sambstone separated by softer beds of shale commaning foseil ustars and other shells of marine and brackish-water origin. Thess softer rookls have been eroded to form the depression which was crosed abome 2 miles west of Allen, and which contains, north of the track, a small lake fed by sulphur springs at its west end.

From the crested ridges of the Mesaverde formation the frawer passes westward over a relatively smooth surface formed on the Lawis shale. The Lewis is a marine shale, somewhat sandy in places, and contains limestone concretions and great numbere of fossil shells, wher belong to the Pierre fauna and imdicate. Upper (retareons age.

Como is a section house on the new rut-ofl between Allem and Dinal. The original line, now abandoned, was built ly way of Carbon, 4 miles south of Como. The new line not only shortens the distance and eliminates sharp curves and heary grades but passes through Hanna, the center of an important coal-mining district. At Como the road

\section*{Como.}

Elevation 6,70i feet. Omaha 639 miles. is built through a small lake about a mile long, in which are found great numbers of salamanders that grow to be neanly a foot in dength and are locally known as "fish with legs." Theso salamanders are rather common in southwestern United States and in Mexior, where they are used as food. The Mexican name for them is axolotl and the scientific name is Amblystoma macortium.

About a mile east of Como the road passes from the Lewis shale to a younger formation, called "Lower Laramie," consisting of soft, easily eroded sandstone and shale containing fossil plants and shells: of fresh-water invertebrates. West of the section house may be sem the yellow sandstones of the lower part of the "tpper Laramie" overlain unconformably by terrace gravels. From this locality westward for 5 miles the road is built on conglomerate, which is well exposed in a prominent hill to the left (south) of the track. It reaches the coal-bearing portion of the "Cpper Laramie" in the Hanna Basim, it depression formed by mountain uplifts at the begimning of the Tertiary period and filled with conglomerate, sandstone, and coal-bearing shale. (See table on p. 56.)

Suecession and character of the formations rxposed in the Ifanna rorl field, between Como and Fort Stcele, I'yo.
\begin{tabular}{|c|c|c|c|c|}
\hline Ssstem. & Formation. & \[
\begin{gathered}
\text { Thick- } \\
\text { nes: } \\
\text { (feet) }) .
\end{gathered}
\] & Character. & Eronomic features. \\
\hline Tertiary (possibly inclules some Cretaceous). & "Upper Laramie" formation & 10,000 ? & Alternating beds of shale and sandstone, of drab, gray, and yellow colors. The sandstone is conglomeratic at the base and in a zone about 7,000 feet above the base. The pel)bles of these conglomerates represent older rocks, now exposed in the mountains surrounding the basin. The formation contains well-preserved fossil plants, shells of fresh-water animals, and in the lower part, bones of huge dinosaurs. & The most produc tive coal formation in this coal field. The coal heds are in places 30 feet in thickness but are commonly from 5 to 10 feet thick. \\
\hline \multirow{4}{*}{Cretaceous.} & "Lower Laramis" formation. & 6, \(200+\) & Drab and gray shale, alternating with brown to gray sandstone. Fossil plants, shells of fresh and brackish water invertebrates (also marine shells in the lower part), and bones of turtles, dinosaurs, and other animals occur in these rocks. & Contains several thin irregular beds of coal, but none of them are now mined. \\
\hline & Lewis shale. & \(3,200+\) & Dark-gray shale with intercalated sandy beds. The fossils in this formation consist entirely of marine shells. & \\
\hline & Mesaverte formation. & 2. \(700+\) & White to brown sandstone and drab shale. Marine shells and the marine plant Halymenites major occur in the lower part, and iresh and brackish water shells in the upper part. & Contains a few thin irregular coal beds of little economic value. \\
\hline & Steele shate. & \(3.000+\) & Drab shale and thin beds of sandstone. Contains marine fossils; ridge - making sandstone layers near the top. & \\
\hline
\end{tabular}

Hanna is a coal-mining town in the sombthentral part of the Hanna Basin. Two beds of coal are worked here, olle 2 t feed and

\section*{Hanna.}

Elevation 6,769 feet. Population \(1,892\). Omaha 650 miles. the other 36 feet thick, accorting to the mines sipereintendent. They are soparated by about 1 , 500 food of strata in which ono coal bed is feot thick has been opened and sereral thinner oncs ato known to occur. There are other coal beds bolow the lower or 36 -foot bed that will be valuable sometime, but nothing has yet beon done toward developing them.

Coal was discovered in this region by Fremont in \(184 \%\) on Platte River. The beds were opened there in 1856 and some of the eotal was used in a forge. From 1862 until the Union lateifie Railrowl was built these openings supplied coal for cmigrants and for the () Yomand Stage Co. The presence of coal here was one of the reanons why the Union Pacific was built along the southern branch of the Oremand Trail rather than along the northern branch up Platte River and over South Pass. Production of coal for the raihoul beran at (arbon in 1868 , after the completion of the railroad westward to this perint, and the coal of this field has furmished power for operating the road ever since that time.

The mines at Hanna were opened in 1890 . Until 190t2 this town was reached by a branch line, and ('arbon, 10 miles to the coutheatst, furnished much of the coal for the road. But when the man line was diverted to pass through Hanna the town of Carbon was deserted and the mines there were closed.

The higher coal bed at Threctown, east of Hamma, lies rather close to the surface, and the falling of the roof in the abombloned parts of the mine makes bad surface sinks. One such hole about 150 feot across may be seen to the right, on the north side of the track, south of Threetown.

Hanna has a daily coal output averaging about 2,500 tons. The coal is subbituminous and is rather light and free burning. Under the forced draft of the locomotives cinders are thrown out and start numerous fires along the track. Burning grass and smoking ties are familiar sights along this part of the route, and even station buildings. are sometimes set on fire. It is estimated that 500 square miles in this basin is underdain by coal and that \(33,000,000,000\) tons of coal is available for mining.

West of Hanna are several deep cuts in which the coal-bearing rocks may be seen to adrantage. Conglomeratic santstones which appear in two of these cuts dip eastward under the coal beds mined at Hamna. Farther west and lower in the formation there are a great number of coal beds, many of them thick enough to be of value for mining. These are all inclined about \(20^{\circ}\) toward the center of the basin and are warped and faulted in some places. The rocks here
contain many fossils, including impressions of leaves, shells of freshwater clams and snails, and bones of dinosaurs, described below by C. W. Gilmore.' These fossils indicate a period of transition between the old Cretaceous life, in which reptiles were the dominant forms, and the newer Tertiary life, in which the mammals, the familiar class of rertebrates of the present time, predominated. The dinosaurs found here are the last known representatives of their type, and the mammals are primitive and inconspicuous. The plants, howerer, are of types not greatly variant from those of the present time, although the species are all different.
\({ }^{1}\) Dinosaur bones belonging to the gemus Triceratops (which means "t three-horned face"), so named in allusion to the three horns with which the skull is armed, are found in the coal-bearing rocks of the Hanna lasin and other formations of the same age. Over each eye was a massive horn directed forward and terminating in a long, sharp point, and the nose usually bore a third lout much smaller horn. (See Pl. XI, B, p, 53.) A mounted skeleton of a Triceratops in the National Museum at Washington is about 20 feet long and stands 8 feet ligh at the hips. Some skulls that have been found measure more than 8 feet, over one-third the length of the entire animal. This great length of head is due largely to the remarkally lony development called the frill, which projects backward over the neck like a fireman's helmet.
That Triceratops, although a plant cater, was a fighter and often engaged in combat appears to be shown by the broken and healed bones that have been found. A pair of horns in the National Museum bear witness to such an encounter. One of them bas been broken and has healed to a rounded stump. Ahhough Triceratops had an enormous head, it had a smaller brain in proportion to its size than the least intelligent land animal of the present time. In the earlier restorations of this animal as shown in the accompanying picture its skin has been represented as being smooth and leathery, but a recently discovered specimen, in which impressions of the skin are preserved, shows that it was made up of a series of hexagonal scales of various sizes.

Triceratops probably lived on leaves and hranches of low trees or shrubs. At the time these animals existed, this part of the country was covered with vast swamp,s in which peat accumulated and wide watercourses that were constantly shifting their channels, the region presenting an appearance similar to that of the Everglades of Florida. Where the waters were not too deep the region must have been covered by luxuriant vegetation and was inhabited by great numbers of the huge dinosaurs, as well as by smaller crocodiles, alligators, turtles, and diminutive mammals, all of whose fossil remains are now found embedded in the. deposits oi that time.
Contemporary with the Triceratops was a great duck-billed reptile related to Trachodon, which was the commonest dinosaur of an carlier period. An aver-age-sized individual measured 30 feet from the tip of its nose to the end of its tail, and as it walked erect on its huge three-toed hind feet the top of the head was 12 or 15 feet above the ground. The head was nearly a yard in length, and the fore part of the skull was expanded to form a broad beak that was covered with a horny sheath, as in birds and turtles. This was admirably suited to the pulling up of the rushes and other water plants that constituted the food of this great creature. These trachodont reptiles lived in the swamps and rivers. The welbed fingers of the fore foot indicate swimming ability, and the long, deep, compressed tail must have been an eflicient swimming organ, and was also usciul as a counterbalance to the weight of the body when the animal

East of Perer the train mans a rat bi．）foed deop and l！miles long through beds of conl，cambomacoome shalde，amd samblame．It

\section*{Percy．}

Elevation 6，932 feet． Omaha 655 miles． is reported that the cond taken up here by the stam shovel was used in the engine and fimished the power for making the rut．The bers beel thas exposed rontains eoal stom thick．
Elk Mountain，which is visible from many pointe on the route． is seen to best advantage to the left（somth）from Porey station． This great mountain of granite．conionl in form and 7 miles in diameter at its base（Pl．XII，B），rises to all alltude of \(11,160^{2}\) foot and is at the north extremity of the Medicine Bow Ramore．To the west of it is a relatively small peak of imeoghlar outline colled Sheephead Mountain．Fiwther southwest cam be distingrished on a clear day the Sierra Madre，near the northern bommtary of（oborado．

About \(1 \frac{1}{2}\) miles west of Dana the traveler passes from the rockse of the＂Upper Laramie＂to those of the underlyine＂Lower Lammie＂ formation，but the change is inconspicuous from the train because the rocks are obscured by surface material near the roat．The＂Lower Latranie＂ron－ sists of sedimentary rocks more than（6，000）feet thick， mainly coarse－grained sandstone，in which are a few thin beds of coal．
walked on its hind legs．From speci－ mens showing impressions of the skin it is known that the animal was covered with an epidermis made up of tubercles． or knoblike plates，of two sizes，the larger ones predominating on the back and sides．One of the most remarkable features about this reptile was its month， which was armed with 2,000 or more separate teeth arranged in vertical rows． Each jaw has from 45 to 60 rows and from 10 to 15 teeth in each vertical row． These were self－adjusting，and as one was lost or worn out another pushed up， to take its place．

As in Morrison time，so in the very much later Lance epoch there were armored and flesh－eating reptiles，and some of these were even more ugly than their Morrison progenitors．Ankylosau－ rus was an armored dinosaur whose entire back was covered by flattened ridged－ skin plates of bone．The animal was low of stature，had a short，blunt hearl，and carried on the end of its stout，heary tail a great triangular club of bone．Even the eyes were provided with a cup－
shaped bony shutter，like the visor of a helmet．which reukd be chaved over the eyeball，so that all the vuluerable parts of this animated fortress were profected by lony armor．The＂horned toatl，＂ one of the small modern lizarts of the western plains，is not very different irom the armored dimosaurs oxmpt in size． （See Pl．NI，A．p．53．

The most striking of the flesh－eating dinosaurs was the Tyramosaurls，or trant lizarl，the larrest carnivorous animal that ever lived on land．It was 40 feet in length，and when it stood erect the top of its hearl was 18 to 20 feet above the gromul．The iore limbs were small，and it must have walked entirely upon its pewerful himd legs．I perfect skull of this animal is exhibited in the American Mhseum oi Natural History in New York＂ity．The jaws are 4 feet in length and bristle with sharp－pointed teeth，sereral of which project 6 inches from their soekets．It is with a feeling of awe that one standing before the have houl contemplates a heast oi whch terrible forrocity．

These rocks contain fossil plants and shells of fresh-water mollusks, although brackish-water and marine fossils occur near their base.

Between Dana and Walcott the strata are bent up in one of the great arches or anticlines of this much-disturbed region. Edson is on the Lewis shale, but the beds of the North Park

Edson.
Elevation 6,720 feet. Omaha 664 miles. formation (Tertiary) extend to the railroad from the south. A mile farther southwest, beyond a short tumnel, is a deep cut through the crest of the St. Mary anticline, which consists of the arehed sandstone of the Mesaverde formation. The crest of the ridge is formed of this sandstone, which is harder and has thercfore resisted crosion better than the shaly beds that originally covered it.

South of the funnel the train again crosses the Lewis shale and the "Lower Laramie" formation before it reaches Walcott. The town of Walcott is built on the North Park formation,

\section*{Walcott.}

Elevation 6,618 feet. Omaha 669 miles. which here covers the older strata. This formation takes its name from North Park, Colo., where it occupies an extensive area and contains thick beds of coal. From Walcott a branch road runs south to Saratoga and Encampment. Saratoga is on Platte River and is well known to sportsmen for its hunting and fishing. Here are some hot sulphur springs and a well that furnishes a mineral water sold under a distinctive name. Encampment, 43 miles south of Walcott, at the end of the branch line, is the center of a copper-mining district which formerly produced considerable ore but is not now very active. This district is in the Sierra Madre. Copper was discovered here in 1868, but not until 1881 did the district become productive. Altogether it has yielded over \(20,000,000\) pounds of copper. Gold, silver, and other metals have been found in small quantities. The mines are in crystalline and metamorphic rocks, of pre-Cambrian age, cut by intrusive rocks, including gabbro, which is supposed to be the source of the copper ore.

About 2 miles due north of Walcott is a prominent hill known as St. Mary Peak, which rises 7,496 feet above sea level. This peak and the ridge extending northwestward from it are composed of upfolded beds of the Mesaverde formation. The strata, during the process of folding, were broken and thrust upon one another in such a way that those east of the fracture were pushed up orer those west of it, so that certain beds of the Mesaverde formation now rest upon younger beds that were originally laid down on top of that formation.

Two miles west of Walcott the railroad leaves the nearly horizontal beds of the North Park formation and reaches the steeply inclined massive yellow sandstones of the Mesaverde formation, which are carved by crosion into a great variety of forms. These sandstones make a conspicuous ridge that extends northwestward for many

A. PLATTE RIVER AT FORT STEELE, WYO.

A characteristic view of the Cretaceous rocks in central Vryomings

13. ELK MOUNTAIN, THE NORTH END OF THE MEDICINE BOW RANGE.

This mountain may be seen during nearly 150 miles of the jnurney aver the Urion Pacifu Ralliodd. Photograph furnished by Union Pacific Rialroad Co.

A. GAP IN THE CAMBRIAN QUARTZITE THROUGH WHICH THE WESTBOUND TOURIST PASSES AFTER LEAVING RAWLINS, WYO.

Sagebrust, in the foreground

B. CHARACTERISTIC VIEW OF THE RED DESERT

The plain is formed on Tertiary beds and covered with sand and sagebrush. The distant buttes are capped with harder beds, which have prevented the rain and wind from wearing them down to the general level of the plan. Photograph furnished by Union Paclfic Railroad Co.
miles. The part of the ridge between Walkote and the point where North Platte River crosses the formation is known as the Rattlesnaks Hills; the part north of the river is called the lharstark hills.

Three miles east of Fort Stede the raitroad leares the Mesatyerde beds and reaches a formation which has boem named the sterde shate. from its occurrence here. This shald is the same as that which erophes out near Medicine Bowand extends westward from that place beneath the coal-bearing rocks of the Hamma Basin.

The town of Fort Stecke derives its name from Fort Fred steme an army post established here in 1866 to guard the [nion Parific Railroad against Indiams. At the time of the Moreker

\section*{Fort Steele.}

Elevation 6,500 feet. Population 69. Omaha 675 miles. massacre, in the early cighties, it was from Fort frem Steele that the unfortunate fore commanted loy Maj. Thornburg was sent to put down the uprising. Maj. Thornburg and most of his command nerer returned. That any of them survived was due to the dispateh of a second experdition from the fort to their relief. There is little about the town now to suggest the troublous Indian times. It serves as a place of supply for sheep herders and for the farms seattered up and down North Platte River wherever the valley is wide enough to be cultirated. The North Platte, from which the railread diverged at the city of North Platte, 291 miles west of Omaha, is reachel again at Fort Steele, 384 miles west of North Platte and 3, 305 feet higher.

From its source in North Park, Colo.. the North Platte follows a circuitous route to the north until it reaches a point nearly halfway across the State of Wyoming. In this part of its comrse it cuts through the Seminoe Mountains and passes completely around the north end of the Laramic Range. In the Seminoe Mountains the river has cut some remarkably picturesque gorges. Across one of these the Linited States Reclamation Service built the Pathfinder dam, 218 feet high, creating a reservoir having a capacity of \(1,100,000\) acre-fect-that is, enough water to cover that number of acres to a depth of 1 foot. In this reservoir flood waters that formerly went to waste are stored, to be released as needed to irrigate 130,000 acres in castern Wyoming ind western Nebraska. This project, which is not yet completed, will cost nearly \(\$ 7,000,000\).

To the left (south) as the train crosses the bridge over the North Platte at Fort Stecle may be seen a sawmill which works timber cut in the mountains and floated down the river. This mill produces many railroad ties and mine props from timber grown in the Medicine Bow and Hayden national forests.

\footnotetext{
\({ }^{1}\) The upper part of the Steele shale is much more sandy near Fort Steele than it is farther east, and several prominent
sandstones lie below the massire sandstone that is here mapped as the base of the Mesaverde.
}

North of Fort Steele the Rattlesnake Hills rise from the river level by a series of escarpments, and about \(2 \underset{2}{2}\) miles south of the town there is another series of escarpments, composed also of the Mesaverde formation and the sandstones of the transition beds between the Stecle shale and the Mesarerde, which are illustrated in Plate XII, A. If the trabler were to make an excursion to these two ridges he would observe that the strata in the Rattlesnake Hills dip toward the northeast, whereas those in the ridge south of Fort Steele dip toward the south. If the strata of these two ridges were projected upward along their dip till they met, they would form an arch whose crest would be a little south of Fort Stecle. As a matter of fact the Mesaverte formation did at one time extend over such an arch. When these beds were bent up by the development of the fold they were probably fractured at its crest. Along this line of fracture the hard sandstones were more easily eroded than elsewhere and were furally cut through by the streams. The underlying soft shate was then rapidly eroded along the crest of the fold, so that in time the axis of the arch, which was originally a ridge, was reduced to a valley bordered on either side by flaring walls of sandstone. This valley, now several miles wide, is followed by the railroad from Fort Stcele to Rawlins.

The station at Grenville (see sheet 11, p. 68) is little more than a pump house. Water from the wells that furnish the domestic supply for the town of Rawlins is not suitable for use in locomotives because it contains mineral matter that incrusts the boilers. Consequently water for generating steam is pumped to Rawlins from North Platte River at Fort Steele, a distance of 15 miles, with a lift of 236 feet.

Far to the north may be seen the Seminoe Mountains, named for Seminoe Lajeunesse, \({ }^{1}\) a French trapper and fur trader. In plain

\footnotetext{
- It is said that Lajeunesse's real name Was Basil and that the name Seminoe was corrupted from a French nickname, "("imineau," although some reports have it that Seminoe was the name given to him by his Snake squaw. Lajeunesse established a trading post on the Overland Trail above Devils Gate. Early in the sixties, with two men and fifteen park animals loaded with goods, he started out to trade with the Sioux. On the way the party was attocked by Indians in Bates Hole, southwest of Casper, and Lajeunesse was killed. Lajeunesse was a successful hunter and trapper, and the old settlers who remember him say that the mountains were called seminoe to perpetuate
the name of one of the bravest and truest pioneers of Wyoming. He accompanied Fremont on the first expedition into Wyoming, and was one of those chosen to make the ascent of Fremont Peak. He is reported to have acrompanied United States troops as a scout on a number of expeditions. His uncle, Gabriel Lajeunesse, was, so tradition says, the hero of Longfellow's "Evangeline."

It is interesting to note that some recent maps show these mountains as the Seminole Mountains, the compilers of the maps evirlently assuming that they were named for the Seminole Indians and that the " 1 "" had been omitted by mistake from the maps on which they were shown as Seminoe.
}

Scate \(\frac{1}{500,000}\)
Approximatel 3 miles to 1 inch

Contour interval 200 feet
ELEVATIOIS IN FEET ABOVE MEAN SEA LFVEL
The distances from Omaha, Nebraska, are shoum every 10 mites
The crossties on the railroads are spaced / mile afart

(iEOLOHIC ANI) TOPOURAPHIC MAP OYERLAND ROUTE
From Ornaha, Nebraska, to San Franciaco, California
 Batiruad 'ompany and the Southera Pacibe Company and Im, in and!-

[NITEI) \&TATES GEOLO(ilCAL, \&THVE〕 GEORGE OTJS SMITH DIREITIR

\(1!15\)
Each quaritangle shown in the map with a mame it parentitcsis in the loket irft comer
theet of thar name

0
sight also north of Grenville, although about 30 miles away, is a range of mountains with striking white saillops on their somethem flank. These are the Ferris Mountains, lying just west of the hommon Range. The white scallops are vertical beds of limestone which have resisted erosion while the soffer beds aromal them hawe been worn away. These mountains were named for (ionere Ferris, one of the early settlers in this region, whose name has hen applied to several of its natural features and many of its enteprises.

South of Grenville the rocks, which have been domed, are cremed so deeply that the Mowry shale is exposed at the surface in the center of the dome and the several sandstones of the Fromier formation hio in concentric ridges around it. The shale between these samdstomes contains limestone concretions in which are shark teeth, ammonites. scaphites, and other fossils of marine mimals that indicate ("ppere Cretaccous (Benton) age. Thes sandstones contain on in some places, and for the purpose of ascestaining their depth south of Rawlins, where a well was started near the base of the Mesaverede formation, the shale was carefully measured at a favorabin experare south of Grenville, where it was found that the sandstone licw 2.200 feet below the lowest sandstone ledge of the transitional zone betwem the Mesaverde and the Stecle shale. The shale between the base of the Mesaverde and the Frontier is therefore somewhat more than 2,200 feet thick.

A few miles east of Rawlins the outeropping edges of the sermal formations are passed orer in rapid succersion. These stratal are upturned around the Rawlins dome \({ }^{1}\) and range in age from Cambrian up to Cretaceous. (See table on p. 2.) Some of these formations can not be seen to advantage from the train. From the geologist's point of view it is unfortunate, though ineritable, that railroads are built where the easiest grades can be obtained rather

\footnotetext{
\({ }^{1}\) The center of the Rawlins uplift consists of granite which rearhes an altiturle of more than 7,600 feet in the hills north of the railroad. Around thisgranite core and sloping away from it are the sedimentary rocks. The oldest, the Cambrian quartzite, is very hard and forms comspinous slopes. The railroad is built through a narrow gap in these rocks west of Rawlins. .(See Pl. XIII, A, p. 61.) The Carboniferous limestone lies in general unconformably on the Cambrian quartzite, but is separated from it in some places by beds of iron ore. Red sedimentary rocks that lie above this limestone are seprated into two parts by a layer of similar lime-
}
stome. It is prossible that the biper part represents the 'hugwater red beds and the lower part the (asjer formation of the Laramie rugion.

The sundance fomation comes next, with its chararteristic marine Juraswic fossils, and above it lie the variegated Morrison beds These are succeeded by the thoverly, which here, as elsewhere, consist of two sandstomes, the lower one conelomeratic, separated ly dark shale. Above the upper sandstome is the Alowry shale, the sandstone of the Frontier formation, and a boely of shale which inchudes muivalents of the steele shale and the Niobrava formation.

Than where the rocks are best exposed. The sandstone of the Frontier fommation may be recognized by low ridges through which shallow (rnts have been made, and the Cloverly forms a prominent ridge seen (0) the right (north) of the track. The pink beds of the Morrison formation appear to the south and the brick-red beds of the Chugwater formation to the north.

The epring from which the town of Rawlins took its name was so dexignated in honor of Gen. J. A. Rawlins, Secretary of War under President Crant. The town is a shipping' point for a

Rawlins.
Elevation 4,7 tl feet. Population 4, 25ti. ()meltat b90 miles. large area both north and south of the railroad. It is the connecting station for Baggs and Dixon, in southern Wyoming, 70 miles to the south, and before the building of the "Moffat road" (Denver \& Salt Lake) it supplied (raig, Hayden, and other places still farther south in northwestern Colorado. It is also a railroad division point.

In the old days a Government road ran southeastward from Rawlins to the White River Indian Agency, in what is now Rio Blanco County, Colo. Mail service was maintained on this road, and the bridge which the Govermment built across Snake River at Baggs is still in good condition. \({ }^{1}\)

The dark-colored Cambrian cuartzite is conspicuously exposed north of Rawlins, where it is orerlain by light-colored Carboniferous limestone. The red oxide of iron at the base of the Carboniferous was formorly mined north of the town for paint.

West of Rawlins the formations on the Rawlins dome that were rossed east of the town are passed over in reverse order.

From points west of Rawlins the Ferris Mountains are again plainly risible far to the north, and a noticeable noteh, called Whisky Gap, may be discemed at the west end of the range. Through this gap runs the old Rawlins-Lander stage road. West of this range are the Green Hountains, which are terminated on the west by a pass known as ('rooks Gap, mamed for Gen. Georgo IT. Crook, a noted Indian

\footnotetext{
\({ }^{1}\) When the White River Utes massarred Intian Agrnt Mreker and his family the command sent south from Fort Steele under Maj. Thornburg followed the Govormonent roud as far as Baggs, then swang west. aressing liftle Snake River about 12 miles farther down and striking out sonthwest arross the great rolling sagebrmsh combtry which lies between Little Snake and bear rivers. Their guide must hatre known the country thoroughly, for their ronte, still known as the Thomburg ram, takes advantage of every topographic feature and every safe watering
place. Some miles aiter crossing Bear River Maj. Thornburg decided, it is said against the remonstrances of his subordinates, to lead his command through a narsow valley. Here they were ambushed, and for three days and nights defended themselves as best, they could, using the inw wagons which they could get together and the borlies of dead horses as barricales. Two of the number escaped during the first night and brought word to Rawlins. When the relief expedition reached the srene, Maj. Thornburg and more than two-thirds of his command were dead.
}
fighter, whose name was given also to the rerek that flows through the gap and to the mountan that lies just west of it.

Near Ferris siding the raitroad crosses a low riden of hills formed by the upturned sandstones of the Mesaverale formation, which con-

\section*{Ferris.}

Elevation 6,869 feet. Omaha 693 miles. stitute the castern rim of the (Emeat Divide Basin, a great depression in the older rocks filled with yommer sediment. West of the ridge are the younger ('retaceous rocks, which are here sterply uptmmed, but which flaten out as they extend westward moler this basin. About 2 miles east of Knobs siding the road reaches Tertiary beds, also steeply upturned here, but flattening out farther west. 'They eonsist of eonglomeratic sandstone altornating with dark-colored shale, and in some places contain beds of coal. Therse rocks contain some fossil plants and shells of fresh-water mollusks.

Near the station called Daley's Ranch the train crosses the wide valley of Separation Creek, which, after following an erratic course for 60 miles, is lost in the Great Divide Basin. North of the railroad (to the right) may be seen in this valley the barns and corrals of a large sheep ranch. Less than 30 years ago the owner of this ranch was a secDaley's Ranch. Elevation 6,684 feet. Omaha 704 miles. tion hand on the Union Pacific, but he is now a large property owner and has been a member of the State legistature. Many tales might be told of sudden rise to fortune in the early days of the sherp industry, before the ranges had been overstoeked and depeted.

In Wood's eut, about 2 miles west of Cherokee, there is a poorly consolidated yellow conglomeratie sandstone resting with uneven

\section*{Cherokee.}

Elevation 6, 828 feet. Omaha 712 miles. base on dark-colored shale. This eut was made through a rise in the rolling plain, and here, as at hundreds of other places along the Union Paeific, the road needs protection against drifting snow. The windbreaks for this one cut cost \(\$ 3,500\).

At Creston siding the train crosses the divide between the Atlantic and Pacific slopes and a sign south of the track reads: "Divide of the Continent." As a matter of fact, the traveler is also within the Great Divide Basin. The ordinary conception of a divide is that of a mountain crest, but here is the anomaly of a continental divide pass-

\section*{Creston.}

Elevation 7,102 feet. Omaha 719 miles. ing through an undrained basin that is about 60 miles across from north to south and 100 milesfrom east to west. This basin contains numerous salt and alkaline lakes, mud flats, and mud springs. Hayden, one of the earlier Government geologists, states that in the region between the Seminoe Hills and Rawlins he saw in interesting group of mud springs, analogous to the mud puffs of the geyser region in Y cllowstone Park. About 400 of these curious springs were found and examined.

Throughout this part of the route the strata lie nearly horizontal, but there are long stretches of desert on which little can be seen except the bunches and tangled growths of stunted Red Desert. sagebrush and greasewood. (See Pl. XIII, \(B\), p. 61.) This part of the Great Divide Basin is called the Red Desert. Coal beds crop out in it west of Latham siding, about \({ }_{5}\) miles beyond Creston, but the coal is of poor quality and little use has been made of it. West of Creston is obtained the first comprehensive riew of the Red Desert. A few miles north of the track is a great stretch of sand dunes, which extends 100 miles, from Creen River to North Platte River. The dunes, many of them more than a hundred feet high, are constantly traveling with the prevailing winds in a direction a little north of east. If a few camels and an Arab or two were added to the scene, the spectator could easily imagine himself in the Sahara Desert. Frequent mirages, endless variety of feature, and wonderful coloring make the desert far from the monotonous streteh it may seem to be at first glance. As the name suggests, the dominant colors are red-russet, brick-red, and vemilion-but there is every tone of gray and brown, with not a few shades of green, purple, and yellow. Unlike the colors of an eastern landscape, those of the Red Desert are not dependent on the season, for there is little regetation to hide the coloring of the rocks and soil.

Despite the sparsity of regetable growth, the Red Desert is a winter sheep range. The seattered "bunch grass," which looks so meager and dry, is in fact excellent forage, curing into hay where it grew and having a high nutritive value. In summer, when the desert is dry and water holes are few, the sheep are herded in the mountains, where Water is abundant and grass is green and tender. The early snows, falling first in the higher mountains and extending week by week to lower altitudes, drive the flocks into the rough fall range between the momntains and the desert. Here they are held until the snow falls on the desert itself, but with the first heary snowfall they are driven from the foothills to spend the winter in the open, where they find pasture in the spaces cleared of snow by the winds. The winds are not tempered here, but neither is the lamb shom, and Wyoming winter winds make heary wool when shearing time comes.

It may be noted that the great problem of stock raising in this western country is not so much to find pasturage-although the range has been greatly overstocked -as to find water. This is true not only in the Red Desert but in almost every grazing area throughout the semiarit States. Places at which stock may be watered are so frow that control of them in general means control of the entire pasture rance. In yours gone by it was the rustom for large stock owners to a"quire a number of water holes and so possess themselves of great

1. TABLE ROCK NEAR EITTER CREEK, WYO.

This rock is composed of alternating hald and soft Tertiary beds. The hard beds furm the top of the tas and of the benches.

B. CHARACTERISTIC VIEW OF THE NORTH WALL OF THE CANYON THROUGH WHICH THE TOURIST PASSES NEAR POINT OF ROCKS, WYO.

\footnotetext{
The bluffs are composed of the coarse sandstone which separates the two groups of cual beds of the Musuverde formation. The Rock Springs coal group lies below this sandstone and the Almond coal group above it.
}

1. COAL-BEARING SANDSTONE OF MESAVERDE FORMATION IN THE WESTERN PART OF THE ROCK SPRINGS DOME EAST OF ROCK SPRINGS, WYO.

B. TRANSPORTATION, OLD AND NEW.

A 14 -horse team hauling fieight from the railroad (in the foreground). The bluff in the distance is White Mountain and is composed of Tertiary beds.

C. NEAR VIEW OF WHITE MOUNTAIN.

White Mountain consists of pink sandstone and shale of the Wasatch group below and the lightegreen beds of the Green River formation above.
grazing areas as effectively as if they owned wery anto of them. In recent years the Govermment has attempted to hreak up this paration by creating publie water reserves which are opern the the nise of all comers, thus giving the small stock grower an equal dhance with his more powerful rival.

In the Indian days the southern Rad Desert (anstituted :amore wi less neutral territory among the mmerons tribers. To the moth wrom the Shoshones or Snakes, to the northeast the (rows, and to the somth the Utes, but this territory was the common hunting gromm and battle ground of all. In 1906, when the L'nemmpahyre [the jumpert the reservation in northeastern C'tah and ranged mortherat wand anross Wyoming, they held a great antelope round-up in the Read Deswet, forming in genuine Indian style a great circle of riders which gradually drew in until the frightened antelope were concentated in the center and killed. About 400 Indians took part in this round-up. Athough they traveled several hundred miles from their reservation, and although it required a regiment of United States troopsion awe them into surrender, no one was killed.

Wamsutter, formerly called Washakie, is a division point on the railroad. It is the site of old Fort Washakie, buile for the protertion of railroad employees and emigrants from the shoshone and Arapahoc Indians. Thece deep wells have been sunk to water here by the raihway company, the deepest boring going down 1,900 feet. The coal Wamsutter.

Elevation 6,702 feet. Omaha 731 miles. beds of the Wasateh group (Tertiary) were penetrated near the surface, and those in the undifferentiated Tertiary at sereral lower levels. The color and lithologic character of the bods penctrated indicate that the well probably did not go entirely through the Tertiary beds. Similar beds were struck in a well 1,115 feet deep at Red Desert station, 9 miles west of Wamsutter.

West of Red Desert station is Hillside.
To the left (south), about 4 miles south of Tipton station is a prominent escarpment known as Laney Rim, formed be the beds of the upper part of the Wasatch group. To the right is an minterrupted view of the Green Mountains, more than 50 miles away. In the distance toward the northwest may also be seen the Leucite IIill.: Toward the west is a conspicuous dark-colored knob called Black Butice, which has served as a prominent landmark since the days of the carliest pioneers.

The stratified rocks, which are nearly horizontal in the center of the Great Divide Basin, have here a gentle inclination toward the cast The softer layers have been croded away faster than the harder ones,
which now appear as prominent shelves. Near Tipton (see sheet 12, p. \(7(1)\) the train crosses one of the harder layers of the Wasatch beds, a shelf-making sandstone, which may be seen to the left, south of the railroad, rising higher and higher toward the west until, on Table Rock (see Pl. XIV, A), south of Table Rock station, it is: about 800 feet above the level of the track. These rocks near Tipton contain great numbers of shells of fresh-water mollusks and some fossil bones.

Toward the east from Bitter Creek station may be obtained a good view of Table Rock, a prominent point in the eastward-sloping shelf

\section*{Bitter Creek.}

Elevation 6,692 feet. Omaha 764 miles. just mentioned. The low hills south of the station are covered with gravel deposited by Bitter Creek before that stream had eroded to its present depth. The gravels contain many agate pebbles, some of them beautifully colored. A well drilled at this station years ago to a depth of 1,300 feet found water under sufficient pressure to flow at the surface, but too alkaline to be of much use.

West of Bitter Creck station the railroad crosses the eroded edges of castward-dipping strata that range in age from middle Eocene to Cretaccous. At Patrick siding these strata have the same general appearance as the Wasatch beds farther east, but west of this siding the hard layers are closer together and outcrop in numerous ridges. These ridges are parts of the east limb of the Rock Springs dome. \({ }^{1}\)

\footnotetext{
\({ }^{1}\) The Cretaceous rocks that are covered by the Tertiary beds of the Great Divide Basin on the east and those of the Bridger Basin on the west are exposed between Black Buttes and Rock Springs becanse they have been arched up into a great dome from the top of which the younger beds harr been removed by erosion. The major axis of this dome is about 90 miles long and trends urarly north and south rlose to the west limb of the dome. The berk on the west dip \(15^{\circ}\) to \(30^{\circ}\); those on the cast dip \(5^{\circ}\) to \(10^{\circ}\). The minor ax is is about 40 miles long and passes through the dome south of Rock Springs. The ollest rocks exposed are the shales near Baxter siding, which correspond to the stcele shale seen farther cast. Around this shaly center outcrop in concentric zones (1) a stries of nom coal-bearing sandstomes; (2) the Rork Springs roal group, (600) to 2,400 feet thick, of lower Mesaverde agre; (3) a massive sandstone, 800 feet thick, of middle Mesaverde age; (4) the

Almond coal group, 900 feet thick, said to be of upper Mesaverde age; (5) the Lewis shale, \(750 \pm\) feet thick; (6) the Black Buttes coal group; and (7) the Black Rock coal group, of Tertiary age.

It has been estimated that the amount of coal in the Rock Springs field available for mining-that is, within 3,000 feet of the surface and in beds \(2 \frac{1}{2}\) feet or more in thickness-exceeds \(142,000,000,000\) tons. As coal is fussilized vegetal matter, the traveler, as he riews the barren hillsides where now scarcely a living thing can be seen, may well wonder how all this great store of carbmaceous matter came there. These coal beds are mute but forceful reminders that desert conditions have not always prevailed in this region. Fossil plants, such as palms, figs, and magnolias, found at many places in these coal beds prove that the carbonaceous matter of the coal accumulated in swamps at a time when the climate was as mild as that of Florida at present.
}

\title{

} (OVERLANO ROITTE

 191.7

Just before reaching Black Buttes station the train wosses the youngest of the three groups of Cretaceons coal beds that are exposed around the Rock springs dome. This is called the

\section*{Black Buttes.}

Elevation 6,610 feet. Omaha 773 miles. Black Buttes coal group. The coal of the Black Buttes group has been mined to some extent. An abandoned mine may be seem to the right (borth) of the railroad half a mile east of Black Buttes station, where also a spur runs to an active mine a mite farther south.

West of Black Buttes the route follows a valley eroded mainly in the Lewis (Upper Cretaceous) shale. The rocks have beend dis-

\section*{Hallville.}

Elevation 6,554 feet. Omaha 778 miles. placed by faulting here, so that individual beds are not easily traceable by one passing rapilly wer them. At Hallville siding the road crosses one of the fanlts or displacements of the strata that are so numeroms in this region and enters a narrow canyon whose steep, cragery walls display the hard rocks of the upper part of the Mesaverle formation. From this siding is obtained a good riew of the Almond cont group, \({ }^{1}\) which crops out north of the railroad (to the right) and is underlain by the white sandstone of the middle part of the Messaverde.

The light-colored sandstone near the middle of the Mesaverde formation makes prominent cliffs at the town of Point of Rocks. (See Pl. XIV, B.) It is an impertant water-bearing samdstone and yields mineral waters. This sandstone is slight! conglomeratic, is irregular in texture and harduess, and has been eroded into many fantastic and corious

\section*{Point of Rocks.}

Elevation 6,503 feet. Omaha 784 miles. forms. To some of the cavernous hollows in it have been given names, such as "Hermit's Grotto," "Cave of the Sands," and "Sancho's Bower." Three wells that have been drilled here to depthis of a little more than 1,000 feet have obtained an abundant supply of water. The water is strongly charged with sulphureted hydrogen (\(\left.\mathrm{I}_{2} \mathrm{~S}\right)\), which soon escapes or is oxidized on exposure to the air. From Rawlins to Green River, a distance of 134 miles, there is scarcely it place where water fit to drink can be found at the surface. The springs and the streams are alkaline, and water from the wells at Point of Rocks is hauled for domestic and railroad use over much of this distance.

The coal beds of the Almond group are conspicuously expesed above the conglomeratic sandstone, and certain fossil oysters and other brackish-water shells are abundant in the rocks above the roal. The coal was mined about a mile east of the town, where the dip of the strata brings the coal beds to the level of the valley floor.

\footnotetext{
\({ }^{1}\) The coals of the Almond coal group are of poorer quality than those of the Rock Springs coal group and as they occur close to the abundant supply oi high-
}

\footnotetext{
grade coal mined at Rock Springs they have not been much exploited. The only place where they have been mined is Point of Rocks, formerly called Almond.
}

About 2 miles west of Point of Rocks the route leaves the massive cliff-making sandstone and comes to the relatively soft yellow sand--tume and shale of the Rock Springs coal group, \({ }^{\text {' }}\) which contains the principat coal beds of this region.
Just east of Thayer Junction the railroad crosses the massive samdetones that occur near the base of the Mesarerde formation and (merges into an open space occupied by the marine shale which farther east is called the Steele shale. This is separated from the younger massive sandstones of the Mesarerde formation by a thick zone of shaly yellow sandstone that forms prominent benches and "hadland" slopes.
The coal of the Rock Springs group is mined at Superior, about 7 miles north of Thayer Junction. About 2 miles northeast of Superior are the Leucite Hills, which are made up largely of

Thayer Junction.
Eleration 6, 434 feet. Omaha 791 miles. igneous rocks in the form of voleanic necks, sheets intruded into the stratified rocks, and dikes cutting across the sedimentary strata. Associated with these intrusive rocks are volcanic cones and lava flows. These rocks have long been objects of scientific interest because of their unusual character. Lately they have attracted additional interest by reason of the potash-rich mineral, leueite, they contain, which may some day he utilized if a process can be found for extracting the potash cheaply. It has been estimated that the igneous rock of the Leucite Hills contains more than \(197,000,000\) tons of potash.

Baxter siding is near the center of the Rock Springs dome. The several eastward-dipping formations crossed between Bitter Creek station and Thayer Junction once arched over

\section*{Baxter.}

Elevation 6,303 feet. Omaha 803 miles. the top of this dome and now dip in the opposite direction on its western slope, as is indicated in the profile on the accompanying map (sheet 12). A mile west of Baxter siding a branch line runs northward 3 miles to Gunn, where mines have been opened on the lower beds of the Rock Springs coal group. Two miles west of the siding the route enters a

\footnotetext{
\({ }^{1}\) The Rock Springs group of coal beds is of lower Mesaverde (middle Upper Creta(eons) age and is the most important group) of coals in Wyoming, for it contains many beds of bituminous coal of higher grate than that of the other groups of this region. The basal portion of the group of rocks consists of heavy ridge-making coal-bearing sandstones (Pl. XV, A, p. 67), and the remainder of brown, yellow, and white sandstones, shate, clay, and interbedded roal. The group is about 2,400 feet thick and rontains at least twelve coal beds
}
that range from 2 to 10 feet in thickness and many other beds less than 2 feet thick. These beds are somewhat regularly distributed through the group and are fairly persistent along the strike. They have been prospected from Sweetwater, south of Rock Springs, northward around the end of the dome to Superior. Very little prospecting has been done south of Superior, as in this locality the coal beds are somewhat thinner and are fewer in number than between Superior and Rock Springs.

GFEAT DIVIDE BASIN

(iEOLOMAC AND TOPOMBAPHIC MAP
()VERLAND ROCTE

Frum Onsaba, Nebrazia, to san Francieco, ('aliformat

\(1: 15\)

picturesque gorge eroded by Bittor (rowk through the rithe formed by the hard sandstone of the Mesatercle formation (P) \(\mathrm{XV}, \mathrm{I}\), p. (ia), Coal is mined from one of the beds that outerop) in the berth wall of this gorge. From the west end of the gerere, just before the train enters Rock Springs, the traveder gets a magnifiernt viow of White Mountain (Pl. XV, (9), to the right, northwest of the town. This is the eastern escarpment of the platean, made up of bede of Eoweme (Tertary) age that occupy the Bridger Basim. The rowks are the same as those that will be seen at close range from the town of Green River.

The city of Rock Springs derives its name from a large spring of saline water that issues at the base of a blufl of the water-bearing sandstone previously deseribed ats oceuring between

Rock Springs.
Elevation 6,256 feet. Population 5,778. Omaha s09 miles. the Rock Springs and Amond groups of coal beds near Point of Rocks. However, water for domestic use as well as for use at the mines in this rimity is pumped from Green River, a distanco of it miles, , vith :a lift of 179 feet.

Rock Springs is one of the most important coal-mining conters of the West and ships each year nearly a million tons of high-grade bituminous coal. The mines have been operated since 1s6s, when the Union Pacific Railroad reached this point, and some of the older workings extend for miles underground. Mine openings may be seen to the right (north) of the railroad east of the eity. A branch line runs north to Reliance and another runs south to mines at Sweetwater. All the mines are in beds of the Rock Springs coal group.

West of Rock Springs the road passes from the Cretaceous formations to the Tertiary beds that occupy the Bridger Basin. The Tertiary rocks are conspicuous to the right (north) of the railroad, in White Mountain (see Pl. XV, C), which here forms the enstern rim of the basin. The mountain is made up of stratified rocks consisting of the light-pink beds of the Wasateh group and the white to light-blue and greenish rocks of the Green River formation. These beds are inclined gently toward the west, so that the light-colored beds of the middle portion of White Mountain descend to the river level at the town of Green River.

Near Kanda (see sheet 13, p. 76) the train enters a narrow winding gorge which was eroded by Bitter Creek and whose walls show the

\section*{Kanda.}

Elevation 6,204 feet. Omaha 816 miles. westbound traveler first the pink beds of the lower part of the Wasatch group and then the harder sandy shales of the Green River formation. These beds are made up of a countless number of very thin and samdy calcareous layers separated by equally thin havers of shate, so that the cliffs of this formation have a wonderfully banded appearance.

The gorge extends to the mouth of Bitter Creek, \({ }^{1}\) where the train suddenly emerges from its narrow confines directly into the broad valley oreupied by Green River.

> In order to maderstand why bitter ('reek estahlished itself in its present course. We must consider conditions that existed here millions of years ago. This stream duts its way directly across the Ronk springs dome instead of flowing armml it and then, seemingly regardless of what would be eary tines of crosion. flows arross the broal valley west of Rock Springs and plunges through White Mountain. in whirh it has cut a gorge 1.000 feet or more in depth. This apparently mreasonable course was established long ages ago. when this part of the romtry Was lower than it is now and the distant mountains, then newly formed and rugged, supplied the streams with more sediment than they could carry. This material was deposited on the lower lands, buikding them up just as flood plains and deltas are being built up in some places at the present time. The resulting accumulations of sediment constitute the Wasatch, Green River. Bridger. and other formations of Tertiary age.

Thare came a time, howerer, when the regiom thus built up was uplifed so much as not only to stop deposition hat perhaps also to divert the streams to new courses and canse them to cut downward into the beds of sediment which they had previonsly deposited. The surface was not raised the same amount in all places and the uplift was accompanied by Warping and fracture of the rocks. East of Fock Springs the upheaval produced a graat dome. In other fractured places the rocks slipped past cach other and produrerd fanles. These movements were wery slow, and for this reason Bitter 'reek mamained itself exen while the great dome rose arross its course. Doubtless similar mosements are in progress now. but the? ate son slow that the lifetime of a man is mon long enough to enable him to deotect a change. The oldest inhabitant of Bither (Tresk valloy womld probably insist that the (reek hand not deepened itechammel during his lifomes, yet it cot
its chamel as fast as the dome rose or it would hava been deflected.

A similar explanation acrounts for the beharior of this stream west of Rock Springs. Its course was established when the surfare was a thousand feet or more higher than it is now - that is, higher than the present top of Table Mountain. As the master stream, Green River, cut its course lower and lower. the smaller stream, Bitter Creek, cut the narrow gorge through Table Mountain. But farther east, where the same sedimentary rocks that compose this nountain were more steeply upturned and more easily eroderl. Bitter Creek and its tributaries cut down a vast area to a level much lower than the top of Table Monntain.

The volume of rock removed by this small stream alone mould probably be reckoned in hundrests of coulic miles. and all of it found its way through the narrow gorge to Green River. Hundreds of other streams delivered similar amounts to the same river, and the question may well he asked. What became of it all? Those who have visited the Grand Canyon of the Colorado in Arizona have noted the muddy waters of that river and wondered where the mud came from. Some of it came from IVoming. Those who have visited the built-up plains and filled basins that mark the ancient course of Colorado River in western Arizona have wondered where the material came from to fill these enormous basins. Some of it came from the valleys through which the Union Pacific Railroal is built. Those who have traveled over the Southern Pacific line in southern Caifornia. where it crosses the broad tlelta which the Colorado built out across the Gulf of California so far that the north end of the gulf-now the Salton Sink - was completely cut off from the main part of the gulf, have wondered where all the sand and silt of that great delta came from. Some of it once rested on the arch of the Rock Springs dome.

MAJOR J. W. POWELL.

1. GREEN RIVER CITY, WYO., AS SEEN FROM CASTLE ROCK.

Photograph furnished by Union Pacific Railroad Co.

li. NATURAL MONUMENTS WEST OF CASTLE ROCK.

The town of Green River (see Pl. XVII, i) is a division heathuarters of the Union Pacific Raiload and the point at whide passenters fon Oregon and Washington change to the Oregon Shont

\section*{Green River.}

Elevation 6,077 feet. Population 1,313. Omaha 824 miles. Line. The Short Line trains, however, use the main line as fall west as (iramger.

Green River is pieturesquely situatod botworn the river and the precipitous bhifts which rise 700 foet or more above the water. Like most of the other fowns atome the route throughout \(W\) yoming it has little aside from the immediate business of the railroad to maintain it. An attempt has heren madn here to manufacture soda from alkaline water pumped from wolls about 250 feet deep, but the long haul to market mondors profitahle operation difficult.

The town of Green River is on one of the most interesting dranage systems in America. The river rises about 200 miles farther north and at the railroad crossing is a stream of considerable size, haviner an average flow of 2,200 cubic feet a second. About 540 miles farther south it joins Grand River to form the Golorado, which, aftor winding through more than a thousand miles of the most womlerful camyon scenery in the world, reaches the Gulf of California.

From the town of Green River, Maj. J. W. Powell, afterwarl Director of the United States Geological Survey, started May \(\mathfrak{Z} \ddagger, 1869\), with his little company of daring associates to explore the canyonss of the Colorado. The story of the trip is well known, but from the simple, unimpassioned language in which Major Powell (see Pl. XVI) himself tells it, the reader might not realize that this was one of the most hazardous undertakings in the history of modern exploration. Few have cared to undertake the adventure since, and some of those have paid for their temerity with their lives. The journey has recently been successfully repeated, howerer, by two photographers, Ellsworth and Emery Kolls, who on September 8, 1911, also started from Green River and, after numerous adventures, emerged from the canyons with a valuable collection of nergatives and moving-picture films.

The Green River beds, which form the blufls near Green River, are carved into many curious and picturesque forms-natural monuments (Pl. XVII, \(B\)) and castle-like structures. The blufls are light green in the lower part and dark brown above. The upper beds are harder than the lower ones and form the protecting caps of the pinnacles. These bluffs have been a source of interest to geologists and travelers ever since they were examined by F . V. Hayden more than 40 years ago, and they have been described and illustrated many times. Their character is indicated by the aecompanying illustrations much better than by any word pictures.

Three miles west of Green River the railroad passes through Fish Cut (Pl. XVIII, A), so named because of the large numbers of fossil fishes (Plate \(\mathrm{ML}, \mathcal{A}, A\), taken from it. Fossils are obtained from thissame formation at Fossil, Wyo., astation on the Oregon Short Line, and sold as curios. On the side of the river opposite Fish Cut the Green River shale has been eroded into a variety of picturesque forms, such as are illustriated in Plates XVII, \(B\), and XVIII, B. These may be seen to the right from the train.

On the old grade just below the present road in Fish Cut there are several oil seeps, where the surface is kept moist by oil that oozes from the shale. Little oil occurs in the Green River formation. Its carbonaccons content consists of partly decomposed vegetal matter (see Plate XIS, \(B\)), which, when the rock is heated, yields petroleum and ammonia. Rock from Fish Cut that gave no outward sign of the presence of oil yielded, on distillation, 31 gallons of oil to the ton and an amount of ammonia equivalent to 34 pounds of ammonium sulphate, a product that is nearly as valuable as the oil.

Just above the horizon at which the fossil fishes occur the shale gives place to brown ccarse-grained cross-bedded sandstone, which occur's in such a way as to suggest that it fills old river channels. It is this channel sandstone that caps the curious pinnacles which are so conspicuous near Green River. The softer shale surrounding and underlying the masses of hard sandstone softens and crumbles under the influence of the weather and is washed by the rain or blown by the wind from the bluffs, the portions that are protected by the hard capping standing as isolated monuments or precipitous cliffs.

From Peru station the traveler may catch glimpses toward the southwest of the high peaks of the Uinta Mountains, in northwestern Colorado. These appear more conspicuous from

\section*{Peru.}

Elevation 6,381 feet. Omaha 831 miles. points farther west.

From Green River the road rises by a relatively steep grade over strata that dip slightly to the west, and at Peru the younger Eocene or Bridger beds \({ }^{1}\) occupy the surface. Where they are cut by the railroad these beds consist of brown shaly or limy sandstone.

Great numbers of fossil bones, most of them representing primitive or unspecialized types of mammals, have been collected from the

\footnotetext{
\({ }^{1}\) The Bridger formation takes its name from Fort Bridger, which stands in the valley of Blacks Fork alout 10 miles south of Carter station. To the traveler on the train this formation is not rearlily distinguishable from the underlying beds, but many of the prominent buttes in this vicinity, especially those south of the
}
track, are composed of rocks belonging to this formation. Probably those most noticeable from the train are the buttes near the station of Church Butte, which takes its name from the largest of this group.

Most of the formations exposed in western Wyoming and eastern Utah are

1. "FISH CUT," WEST OF GREEI RIVER CITY, WYO.
 Pacific Rallroad C

I: BLUFFS OF THE GREEN RIVER FORMATION NEAR GREEN RIVER CITY, BYO.
Photograph fumshed by Union Pacific Railroad Co.

1. FOSSIL FISH (DIPLOMYSTUS DENTATUS, SHOWING THE BONES, FIN RAYS, ETC., EMBEDDED IN A SLAB OF ROCK TAKEN FROM THE QUARRY.

8. FOSSIL LEAF OF THE SWEET-GUM TREE (LIQUIDAMBAR) AS IT APPEARS ON A SLAB OF ROCK TAKEN FROM THE QUARRY.

FOSSILS FOUND IN THE GREEN RIVER (TERTIARY) FORMATION,

Eocene beds of the Bridger Basin. It was during the Eocene epreh that the great development of mammalian life took plare. The small
designated by other names than those that lio farther (ast. The following table used for beds of essentially the same age shows the relations of then formatome:
 Wyoming and castor" l'uht.
\begin{tabular}{|c|c|c|}
\hline Perioul. & Fpoerin. & Ciromp atul fumation \\
\hline Tertiary. & Eocene. & \begin{tabular}{l}
briderer iommation. Green Rivorfomation Wasaleh group: \\
Knight formation. Fowkes formalion. \\
Amy formation.
\end{tabular} \\
\hline Cretaceous or Tertiary. & (?) & Evanston formation. \\
\hline Cretaceous. & Ceper 'retaceols. & Adaville formation. IIilliard formation. Frontier formation. Aspen formation. Bear River formation. \\
\hline Jurassic. & & \begin{tabular}{l}
Beckwith formation (posibly incluclin, some ('retarenus). \\
Twin (reek limestone.
\end{tabular} \\
\hline Jurassic or Triassic. & & Nugget sandstone. \\
\hline Triassic. & Lower Triassic. & \begin{tabular}{l}
Ankareh shale. \\
Thaynes limestone. Wuortsite formation.
\end{tabular} \\
\hline \multirow{3}{*}{Carboniferous.} & Permian (?). & Park (ity formation. \\
\hline & Pennsylvanian. & \begin{tabular}{l}
Weber quartzite. \\
Morgan formation
\end{tabular} \\
\hline & Mississippian. & Limestones. \\
\hline \multicolumn{3}{|l|}{Devonian.} \\
\hline \multicolumn{3}{|l|}{Silurian.} \\
\hline \multicolumn{3}{|l|}{Ordovician.} \\
\hline \multicolumn{3}{|l|}{Cambrian.} \\
\hline \multicolumn{3}{|l|}{Algonkian.} \\
\hline Archean. & & Granite, ete. \\
\hline
\end{tabular}
primitive mammals of carlier epochs were succeeded by a great variety of forms, some of which are the ancestors of animals now living, though others seem to have left no descendants. Two of the common forms are illustrated in Plate XX (p. 80).

Bryan, the home of 3,000 people during the construction of the Lnion Pacific Railroad, is now little more than a name in the desert. Toward the southwest, 60 miles away, may be seen

Bryan.
Eleval ion 6,173 feet Omaha s37 iniles. the snowy summit of Gilbert Peak, one of the monarchs of the Uinta Mountains, rising 13,422 feet above sea level.
It Granger the Oregon Short Line branches off to the right from the Union Pacific, turning northward up Hams Fork.

Granger.
Elevation 6,279 feet. Omaha 854 miles. West of this station the Tertiary strata dip slightly toward the cast, so that the westbound traveler passes gradually from younger to older beds.
From points between Granger and Hampton some of the distant summits of the Salt River Range may be seen on the right, far to the northwest, and the rugged, snowy peaks of the Uinta Mountains on the left, far away to the south. The hill south of the railroad, half a mile west of the station, contains great numbers of fossil shells. One layer of rock here, about 4 feet thick, consists almost wholly of coiled shells, of Eocene age, and another layer just below it contains numerous clamshells in an almost perfect state of preservation.

Carter consists of only a few houses but is the center of an extensive sheep-raising industry. During the summer the

Carter.
Elevat ion 6,507 feet. Omaha sso miles. sheep are pastured on the distant mountains, but when the snow falls they are driven down to the desert plains, where they pass the winter.
West of Carter the red sandstone and shale of the Wasatch (Tertiary) group are again reached. These beds underlie the surface rocks that occupy the center of the Bridger Basin. Their material here is much coarser and of a deeper-red color than it is east of Green River. This change in character becomes more and more conspicuous toward the west, and near Evanston these rocks are markedly conglomeratic. Farther west, near the Wasatch Mountains, they are made up largely of a still coarser red puddingstone.

Between Carter and Bridger is Antelope station, at which the traveler will be nearly halfway from Omala to San Francisco.

(EOLOGIC ANH TOL'QGLAD'HIC MAP ()NERLANI) ROUTE

Frwon Omaha, Nebraska, to fan Franciaco, (alifomia

[NITED STATER (iEOLOGICAL EURVEY

\section*{151.}

Bridgerstation (see sheet 14, p. SS) wat mamed for dames Bridgor, \({ }^{1}\) the first white man 10 sothle in this section. Near the station the

\section*{Bridger.}

Elevation 6,622 feel. Omaha 593 miles. underlie the Tortiary heds of the Briderer Basin bexin to appear at the sumbere. Ahont 3 mites morth of the station, where the railreat turns somth, the hills formed by these older reeks are visible at the rioht (west), and the ridges formed by them lie nearly paraller ho the roall as far somth as the Aspen tunnel. Throughont this distance the ronte traverses the valley eroded by Muddy Croek, minin! in the Wisatch red berls, which here dip gently to the east.

The original route of the railroad from Lemy up the valley of Muddy Creek and over the divide near old Bear River City has been abandoned. It was difficult 10 operate berause of

\section*{Leroy.}

Elevation 6,702 feet. Omaha 898 miles. curves and grades that necessitated helping angines for all heary trains. The new route follows the valley used by the Mormon pioneers in rossing Aspen Ridge. \({ }^{2}\) This ridge is pierced by the Aspen tmomol, which is 5,900 feet long and is the largest single piece of tummel work performed by the Union Pacific Railroad Co. In order to hasten
\({ }^{1}\) James Bridger was a well-known pioneer who did much toward taming the "wild West." Although he called Fort Bridger his home, he may more properly be spoken of as a citizen of the West, for he was at home beside the camp fire wherever night overtook him, whether on the plains or in the mountains, whether alone or surrounded by hostile savages.

He was born in Pichmond, Va.. in 1804, but soon drifted to the West, where he was employed by the Rocky Mountain Fur Co. So rapidly did he become familiar with the wilderness and with its savage inhabitants that before he was 30 years of age he was known as "the olfl man of the mountains." He discovered Great Salt Lake in the winter of \(1824-25\), and, because of the salinity of its waters, thought it was an arm of the Pacific Ocean. Two years later men under his direction explored the lake, passing completely around it in boats made of skins.
At his trading post on Black Fork, 10 miles southeast of the Bridger station, he built the fort that bore his name and which was later used by United States soldiers. Bridger was long employed
as a guide for the Army in the several campaigns against hostile Indians, and also ly companies of emigrants, especially by the gold seckers of 1849. Ite was in western Wyoming when the advance company of Mormons, led by Brigham Young, were on thrir way to the "promised land" and urged them not to settle in Salt Lake Valley, beranse of the smpposet difficulty of ripening (rops there. He said to Young: "I will sive you a thousand dollars for the first ear of com that ripens there." Young, who clamed divine zudance, replied: "Wait and we will show you."
\({ }^{2}\) Aspen Ridge is the eastermmost of a series of north-south ridges that are separated loy troughlike depressions, of which Mammoth Hollow is a type. These ridges originated in mountain-making movements which probably hegan at the close of the Cretaceons period and resulted in the upheaval of the Cinta and Wasateh monntains on the south and the group of mountains extending southward from Yellowstone Park on the north. Thase ridges comnect the groups of monntains and may be regarded as incipient mombtain ranges. The rocks were broken or
the work of construction a central shaft was sunk, the top of which Was 331 feet abore track grade. From the bottom of the shaft headings were started east and west to connect with the end headings. The greatest depth reached below the surface is 456 feet ; the highest point above sea lerel 7,296 feet. The tumnel accommodates a single track and is lined with timber and concrete. The new route was completed in 1901, at a cost of \(\$ 12,000,000\), and shortens the line 10 miles.

It the point where the road leaves the main branch of Muddy Creek, \(2{ }^{1}\) miles south of Leroy, the traveler may obtain a view, toward the left (east), of the edge of the platean of Bridger beds on which stands Bridger Butte. A mile west of Ragan may be seen, to the right (north), a group of derricks where oil wells have been sunk into the Aspen shale, \({ }^{1}\) which includes the oil-bearing rocks of this region. A small refinery was built at Leroy, but it was not in operation in 1914.
faulted and upturned in ridges, but the movement was arrested before high mountains were formed here.
Two main groups of fanlt lines are rouscel ly the Union Pacific in this general region. The Alsaroka fault and the oil surings lanlts are crossed at the Ispen tumel and the Amy and Medicine butte faults at Eranston. The Absaroka isat thrust fault ber which the rocks on the west have been pushed eastward and raisul more than 15,000 fect, some of the older solimentary rocks being brought to altitudes much greater than these of the gounger rocks of this region. This relatim is conspicuous west of the Aspen tunnel. where rocks of early Tertiary age about against some of Jurasic age. The Verlicine Butte fault, which the road croses at Exanston, is also an werthrust. Tu the Almy is a normal or gravity faul:- that is, the rock mass here has dropred instead of being pushed upward.

Erowion. which followed the initial montain-forming disturbance, carved the wher rocks ibto low hills and shallow valleys and these in turn were huried by accumulations of sediment in early Encene time. Later the rocks were again uphwared. erosion was renewed, and other hills and valleys wre carred ont. These alen were buried by the red sands and gravels of the Waratch group, which re(wnt ernsion has romoral in some places, expering again the pre-Wasatrh hills, bul whichetill remain as the surface rocks
over large areas of western Wyoming and eastern Utah.
\({ }^{1}\) The Aspen formation consists of shale 1,500 to 2,000 feet thick, in which are layers of samlstone that contain oil. Near the top of the formation occurs the "Spring Yalley oil sand." which contains the principal oil pools, although some have been found in lower sands. The formation is of marine origin, and the shaly parts contain numerous scales of fishes, from which they have been called the "fish-scale shales." Certain fossils found in the formation prove that it belongs in the lower part of the Upper Cretaceous series.

Although most of the oil of this region has been fotind in the Aspen formation, some comes irm the Bear River formation, which immediately underlies the Aspen. The occurrence of oil in this region was known to James Bridger and other early trappers, but the first published account of it resulted from a visit made by the Mormon pioneers in 1847 to the natural oil spring, known as the Brigham Young oil well. 6 miles southwest of Spring Valley. Small quantities of oil were collected from this and other springs, and prospecting was carried on intermittently until 1900, when high-grade oil was struck in a well near Spring Valley. Since that time several pools have been found, but the yield is small, the best wells producing only a few barrels a day.

Just west of Spring Vialde? station the 1 rain cronem a small expusure of the Frontier formation.' 'These comblamping rocks are of Upper Cretacoms age amb have beon wapord be-

\section*{Spring Valley.}

Elevalion 7,003 feet. Omaha 905 miles. cause of the remeval of the red beede of the Warathen group that once covered them. Sermal abamdomed prospects and whe conal mines may be seen ons bath side of the track, but no coal is mined here now.

Aspen is a small station at the cast end of the Aepen fammel. From
 the head of one of its tributarios. In groing Herough

\section*{Aspen.}

Elevation 7,175 feet. Omaha 909 miles. the tunnel the train passes from the area dramed bes Colorado River to the (ireat Rasin-that pertion of western North Americal whirh has montmo the the sea. The waters east of Aspen Ridge find their way down Madly: Creek and Black Fork to Green River and thessee through thes dramid Canyon of the Colorado to the Gulf of Californial. Thase west of this ridge find their way to Bear River and how her a ciromitome route into Great Salt Lake, from whieh they can compe muly bey eraporation.

The rocks at the east end of the tumel are the real berls of the Wasatch group, but the Orster Ridge sandstone may To sech in fle ridge just above the mouth of the tumel. The tumel firmeres this sandstone and also part of the Hilliard formation of ["ppre ('rotaroons age, next younger than the Fronticr.

West of Altamont the route passes for about 2 miles through an open valley occupied by the soft Hilliarl shate, then croser- the fault

Altamont.
Elevation 7,217 feet. Omaha 911 miles. line that separates this shale from the Bowkwith formation, \({ }^{2}\) the oldest formation exposisel neare the Union Pacific Raitroad in western Wyoming, and onters a narrow gorge carved out of the hard conglomeratic: sandstone of that formation. This samdstone, uptumed to a nearly vertical position, now crops out in sharp ridges composed of

\footnotetext{
\({ }^{1}\) The Frontier formation consists of coal-bearing sandstone and shale of Benton (Upper Cretaceous) age. Its name is derived from Frontier. Wyo.. where the coals are well developed. The formation contains near the top a prominent sandstone about 200 feet thick, which usually forms a ridge at the outcrop and is characterized by the presence of fossil shells of a long, slender oystar (Ostrea soleniscus). Since 1858, when Englemann collected fossils from this sandstone on Sulphur Creek, it has been a favorite collecting ground for geologists,
and from the time of the liaydern hurver, in 1872 , it has bemen known as the oyster Ridgesandstome. Fossil platats alon have been collerted iromb ha front iondomation.
\({ }^{2}\) The Berkwith formationtompricestwo members. The lower member comsisk of conglomerate, sumblone and sathly "lay 2.500 feet thick, light mbored nowe the raibroad. but red iarther north; the npmer member consists of lighterolored sandstomer and clay about 3.000 beet thick wedl exposed west of the railroad from liriderer to Leroy and in the ridges west of the Aspen timnel.
}
coarse red conglomerate that is seen to best advantage toward the right (north). These ridges were formed by mountain-making movements which fractured the once horizontal layers and shoved them up to a vertical position, and by erosion, which carved them into the present forms.

Beyond this series of sharp ridges and well exposed in the gorge, on either side of the road, is the Bear River formation, \({ }^{1}\) which is here about 1,100 fect thick. In the lower part of this formation north of the track were found great numbers of fossil shells of clams and snails.

West of the narrow gorge in the Beckwith and Bear River formations is a small open space in which the Aspen shale

Knight.
Elevation 7,0 03 feet. Omaha 916 miles. crops out. Still farther west the route again enters an area occupied by the red beds of the Wasatch group. The Wasatch of this region consists of the Almy, Fowles, and Knight formations, the last having been named from Knight station.

About 2 miles west of the station the train reaches the open valley of Bear River, a broad marshy flood plain over which the river moanders in a serpentine course and which at times of high water is completely flooded. Bear River rises in the Uinta Mountains, about 50 miles to the south, and flows in a circuitous route, first northwestward and then westward, around the north end of the Wasatch Mountains, and finally doubles back upon itself in a general southerly course and empties into Great Salt Lake. Measurements of its flow show that on the average 375 cubic feet of water passed Evanston every second in 1914. The current is swift in some places, and from this point in its course to its mouth the river falls about 2,500 feet. Water from Bear River and its tributaries is utilized for irrigating about 75,000 acres of land.

\footnotetext{
\({ }^{1}\) The Bear River formation consists of dark slale, some of it carbonaceons, and thin layers of sandstone and limestone, and in some places it includes beds of coal. It may be distinguished from the older, unfossiliferous Beckwith beds by its darker color and by the fossils near its base.

Some parts of the iormation contain numerous fossil plants, as well as shells of fresh-water and brackish-water mollusks, untike those found in Cretareous beds elspwhere. The formation is not widely distributed, being known only from Bear Rivor ("ity-an early construction camp of tho ['nion Parific near Bear River on tho line now ahandoned-northward to the salt River Range. Its thickness radges from 50\% to about 5,000 feet.
}

The Bear River beds were formed not far from the continental land mass that remained above water throughout Upper Cretareous time, west of the interior sea. and it probably represents a delta at the mouth of a river that drained this old continent. The presence of fossil plants, coal beds, and fresh-water invertebrates in the Bear River formation, together with its stratigraphic position beneath the Aspen formation, which is known from fossils contained in it to be of Benton (Upper Cretaceous) age, has led to the somewhat persistent suggestion that the Bear River may be the time equivalent of the Dakota sandstone, although its maximum thickness is about 50 times that of the Dakota.

A. A CREODONT, AN ANCIENT DOGLIKE ANIMAL, ONE OF THE ANCESTORS OF THE CARTNIOROUS MAMMALS OF TO-DAY.

After Osborn. Published by permission of The Macrnillan \(\mathrm{C} O\).

B. EOBASILEUS, ONE OF THE TYPES OF ANIMALS THAT BECAME EXTINCT AGES AGO.

After Osborn, Published by permission of The Macmillan Co.
U. S. GEOLOUICAL SURIVEY
\(\left[\begin{array}{ll}\hline\end{array}\right.\)
A. GEOLOGIC FEATURES SEEN FROM POINT SOUTH OF EVANSTON WYO LOOKING NORTH.

B. DETAILS OF PROMINENT HILL AT LEFT OF VIEW SHOWN IN \(A\).
ions lies between the points A and B . Upper beds are conglomeratic Almy; low
River are composed of nearly horizontal strata beloriging to the Knight formation.
The line of parting between the Evanston and Almy formation

Near Millis station may be seen to the right (north) great piles of railroad ties that were cut in the momatains many miles to the south and floated down Bear River at times of hish water. To the left (south) are blulis formed by beds of graved lying horizontally wrer tho eroded aderes of tho upturned red beds of the Kinight formation. 'These gravels were deposited hy the river atore aso, before it hat rut its valley down to the level of the present flood plain.
 and Medicine Butte faults. Betwone these two fandis the rowss aro steeply tilted, and to the loft (south) may be obtaimed a glimpere of the Almy conglomerates and the Evamston formation, a coal-bearimer formation that is best exposed north of the city.

Evanston is the seat of Uinta County amd takes its name from John Evans, a civil engineer, who founded it in 1869 . It is al coal-mining and commereial center and a division point of the

\section*{Evanston, Wyo.}

Elevation 6,739 feet. Population 2,583. Omaha 925 miles. Union Pacific Railroad, with machane shops, isting plants, and other buildings. A brameh road connerets. the city with several mines, some as far morth as Almy. The Evanston formation, which contans the principal coal beds of this region, is well exposed in a hill that may be seen to the right, about 2 miles north of the city. Plato XXl, 1 , shows the relations of this formation ats seen from Eramston. The type locality of this formation is east of Bear River, just north of the city, at the locality shown in Plate XXI, P. Its rocks consist of conglomeratic sandstone, shale, and thick beds of coal. It lies on the eroded edges of several older formations, indicating that its deposition followed a long period of erosion. (hee table on p. 75.)

Six miles west of Evanston the railroad crosses from Wyoming into Utah.

Utah has an area of 82,184 square miles and a population of \(373,351\). The eastern part of the State consists of high plateans; the western part, which lies in the Great Basin, \({ }^{1}\) consists of ranges Utah. of rugged mountains trending in general from north to south, sagebrush-covered hills, wide, nearly level valleys, clear mountain streams, and fresh and salt lakes. The floor of the Great Basin is formed of alluviunn washed from the plateans and mountains.

\footnotetext{
\({ }^{1}\) As a general rule continental surfaces are drained by streams flowing to the ocean, but there are some exceptional areas which have no outward drainage. The Great Basin (fig. 10) is such an area. It was so named by Frémont, who was the first to gain an adequate conception of
its character and extent. It lies near the Western margin of the continent and is surronnded by the headwater divides of rivers tributary to the Parific Ocean.

Roughly, the Great basin is bounded by the Porky Mountains wh the east and by the Sierra Nevada on the west. It
\(38088^{\circ}\) —Bull. 612-16-6
}

The great mineral wealth of the State is shown by its record of mincrul production, which in 1913 amounted to more than \(\$ 53,000,-\) 000 . The five leading products in that year were copper, \(\$ 25,024,124\); silver, \(\$ 7,903,240\); lead, \(\$ 7,309,579\); coal, \(\$ 5,384,127\); and gold,

Figure 10.-Map showing outline of the Great Basin and the lakes it once contained. Shaded areas show quaternary lakes; dutted lines show boundaries of drainage basins.
\(\$ 3,565,229\). Utah is third among the States in the Union in the production of silver and lead and fourth in the production of copper.
extends from Oregon fathe north to and beyonl the Mexican boundary, bat is limited by the drainage system of Colorado River on the southeast. The area thus defined is 800 miles long from north to south, and nearly 500 miles broad in its widest part. It contains 200,000 square miles, an area about equal to that of France.

The Great Basin is a region of diversified surface features, including flat desert valleys and rugged monntain ranges containing lofity poaks. It is mot, as its name might suggest, a simgle pan-shaped
depression, gathering its waters to a common center, but is divided into a large number of independent drainage areas. Both the mountains and the valleys are of types more or less peculiar to the region.

The inountains are long, narrow ridges, most of which extend from north to south and project abruptly out of the plains, there being a noticeable absence of foothills. Many of them terminate at the ends as abruptly as their side slopes join the surrounding plains.

Arid plains are abondant in this region and sume areso extensive that they appear

Among the State's nommetallic mineral resomere are comal, whim underlies large areas, and phosphaterow.

Although the average ammal ramball in (tah is only 11 inches, aren, crops are grown, chiefly be irtigation, and great mmbers of livestock are raised. The value of the sugar mato from sugatr bewts in 1911 amounted to more than \(\$ 10,000,000\). Wheat, wats, amd pitatores are raised in large guantities, the value of these products in 19 : \(:\) : having been more than \(\$ 8,000,000\). The live stock in ['ah in lonl| was valued at \(\$ 18,000,000\), and the value of the wowl clip was \(\$ 7,000,000\). The value of the manufictures of the state in 1911 ammonted to about \(\$ 76,000,000\).

To the geologist Utah is an interesting fied of wom and stmply. Its peculiar mountain ranges, tho record of its extinet lakes, the deposits in its prosent lakes, its coal beds, its possible grats aml nif fiods, and its diverse and aboudant minesal deposits, as well as its muldergomed water and its a vailable watee powers, have fong commanded attention and have been tho subjects of many reports.

\begin{abstract}
almost boundless. They present many of the features generally supposed to characterize a desert, such as derp) drifting sands and broad stretches of wholly barren mud plains, and in the heat of the midday sun they exhibit all the tricks of
\end{abstract} the mirage.

The climate of the rogiom is very dry, the average ammual rainfall varying from 10 or 12 inches in northern Nevada to loss than 3 inches in the south and southwest. In northern Nevada the plains are in general covered with seattered clumps of brush, of which greasewood (Sarcohatus) and numerous varieties of sag. (Artemisia) are most common. In the spring the barren-looking soif brings forth a surprising variety of beautiful and dolicate flowers, most of which disappear entirely as the jarching heat of smmmer comes onf. Timber or even trees of any kind are, as a rule, exceedingly scarce. Cottomwoods and willows grow in patches or line some of the more permanent watercourses, and more or less scrubly pines and cedars are scattered on some of the higher mountain slopes. Herds ot small wild horses, or mustangs, roam over some of the less frequented mountain ranges, but, like the ubiquitous coyotes, they are shy and are not likely to be seen from the train.

Agriculture is almost wholly restricted to a few areas that can be irrigated, al-
thongh dry farming is bobier triod in wolne localities. I mome eommon inthesty is the grazing of sherep and athla on the bermeh grasis that grows in tho shate of the satgelorush.

The mines of the fereme metats are the principal somere of wathth in the direat Basin, and in commadion wilh thoir devedpmanat towns have bewn built in ont of the way phates. many of them high on the late montitala sides and far fomen Water and foxel supplios.

Sine the compledion of the first transcontinental railpoad, in 1569 , sultement of the rewion and developmont of its resoures have progresind enommonsly. Now several transeonlinental rathembs (ross it and numbrons bramehos watand through the drosert valleses morth and south from the truat lines; fowns and mining (*amps havespung up along these highways, and almost exary acre of casily irrigable land has beron appmopriand by
 sustenanere on the mountains amd in the sagebrush-covered ralles: that wore once thought to be \(f(x)\) bamell ever (o) beeone of service to man. Throughout the eastern borter of the Great Basin, in Idaho and Utah, the followers of the Mormon fath have found a "promised land" which, by great industry, they have reclamed from its primition desolation and made the home of thousinds.

Wahsatch, which consists of little more than a station house, stands at the crest of the divide between Bear River and Weber River. The Wahsatch, Utah. Vlevation 6,524 feet. () matha 935 miles. name of the station retains the old spelling, which has been simplified for the name of the mountans. From many points west of this station may be had glimpses of the Uint: Mountains, to the southeast, and of the Wasatch Momutains, to the sonthwest. Toward the west may be seen the northward extension of the Wasatch Range. The hills near by consist of the red and yellow sandstone, shale, and conglomerate of the Wasateh group, which occurs here in typioal development. It was from this region that Dr. Hayden, Direetor of the U'nited States Geological and Geographical Survey of the Territories, named thene strata.

A short distance west of the station the railroad passes through a tumel in these red rocks and enters Echo Canyon, which is famous for the curions forms carved by erosion from the red conglomerate of its walls.

The first station in this canyon has been named Curvo, because of

\section*{Curvo.}

Elevation 6,821 feet. Omiaha 939 miles. the route taken by the railroad in its vicinity. Many of the sharp curves and steep grades of the Union Pacific as first built have been eliminated by recent improvements, but it is not easy to smooth out all the rough places, especially where the road is confined in a narrow valley.

The station of Castle Rock takes its name from the castellated

Castle Rock.
Elevation 6,210 feet. Population 131. Omahat 914 miles. form of the north wall of the canyon which overlooks it. The red beds are here carsed by erosion inte, many fantastic shapes, and the peculiar forms seen here berome more numerous farther west and culminate in grotesqueness near Echo.

Some of the most prosluctive gold and silver mines in the world have been dereloped in this inhospitable region. With all this advancement, however, the (ireat Basin is still very sparsely settled.

Although not generally atractive to the pleasure reeker, the Great Basin appeals especially to the geologist, both berallse the absence of vegetation gives numsual facilities for investigation and berealuse the problems to be solved are peraliarly interesting and economically important. There is, morenver, an attraction in the region that grows with more intimate acquaintance, and that is due partly perhaps to its vastuess, its rlear dry air, and the free and healihful life that it seems tw induce. Although
the region is genemally called a desert, its climate compares favorably with that of many other parts of the country. The low humidity prevents the high temperatures of summer from being oppressive, except possibly in some of the low-lying southern valleys where the heat is almost unendurable. It is true that the wind blows fiercely at times, so that the air is filled with flying dust and sand, but these storms are infrequent. The country probably appears to least advantage viewed from the windows of a Pullman car. From such a position of comfort the heat and dust of a summer's day appear umaturally intensified and the apparent lonesomeness of a strange and unknown country is likely to be repellent.

A. "STEAMBOAT ROCK," IN ECHO CANYON, UTAH.
 t consists of red conglomerate of Tertary ags

B. THE NARROWS, IN ECHO CANYON, UTAH.

A. NORTH WALL OF ECHO CANYON, UTAH, AT ITS JUNCTION WITH WEBER CANYON, NEAR THE TOWN OF ECHO.

The rochs consist of coarse red conglomerate of the Wasatch group.

I. PULPIT ROCK AT ECHO, UTAH.

Two miles east of Emory lighterolored conglommatio: samelstome appears in the canyon wall tw the right (morth), staply inclimed

\section*{Emory.}

Elevation 5,925 feet. Omaha 950 miles. boneath the red beds of the Wisatelt eronp. Theme tilted beds contain fossil plants that, imbieato ('retaceous age. Near Emory shation a thickmes af several thousand feet of these beds is experied. 'Theremergennerates are very comse neal the top and are collored light, red, so that, they can not always be distinguished from theowerlyng comernmorates of the Wasatch group.

In Echo Canyon west of Emory there is some of the most, pioforesque scenery on the Overland Romte. Nftor patsing orer the ervat stretches of flat, unbroken desert farther abst, where litide lat, sangbrush and sand can be seen, tho traveler is here membed hy wemer something that has a vertical dimension. Some of the difls ane mearly 1,000 feet high. 'The canyon has been carved by the stream, the rains, and the wind, working through long ages on the red comglonnerate, which, because of inequalities in hardness, has heent worn into many a curious and fantastic shape whose gemeral edfert call low, be adequately described and is only poorly represented by the ramman. Many of the forms have received fameiful names sugrested hy theif shapes, such as "Jack in the Pulpit," "the Sphanx," "dhe (iiant's Teapot," "Steamboat Rock," and "(iibraltar." (See Pl. XXII, A.) The imaginative spectator may be able to distinguish the forms suggested by these names, but the more observant will rather be impressed by the evidences of the working of the great loress of hathre here so conspicuously displayed.

Echo Canyon is in places very narrow and longetretches of its morth wall are almost vertical. (See Pl. XXII, \(B\).) (\()_{11}\) top of this wall may still be seen the rude fortifications built hy the Mormons during the so-called Mormon war of 1857 ter prevent the cntrance ol l'nited States soldiers into Salt Lake valley. Here the defomders watched and waited for the battle that was never forght, for the mismmer-standing-or worse, according to Bancroftis "IIistory of Ltah"-was adjusted before the troops reached the canyon.

Just before entering the town of Erho the tram passes chose to Pulpit Rock (see Pl. XXITI, \(B\)) which may be seen on the right. Is the name implies, this rock bears some resemblance

\section*{Echo.}

Elevation 5,471 feet. Population 144. Omaha 960 miles. to a pulpit, amd the story hats been somewhat widely circulated that firom it Brigham Iomorg promehed his first sermon on entering the "promised lamd" in 1817 . However, those in position to speak with aththority on this subject say that the first company of Mommom emigrants did not stop at Pulpit Rock and that Yomme was sick with mountam fever during this part of the jommary.'

\footnotetext{
\({ }^{1}\) Many of the facts relating to the Mormon immigration have been kindly furnished by Mr. Andrew Jensen, of Salt Lake City.
}

At the town of Echo the canyon opens into Weber Valley, up which a railroad spur extends through the coal-mining town of Coalville to the metal-mining district surrounding Park City. \({ }^{1}\) Coal was found by the Mormon settlers near Coalville long before the Union Pacific was build and has been mined more or less continuously ever since its discovery. The mines of the Grass Creek valley, in the Coalville ficld, now furnish fuel for the mining operations at Park City and for the manufacture of Portland cement at Devils Slide.
At Echo the red conglomerates (Wasatch) form cliffs 500 feet or more in height (Pl. XXIII, A). South and west of the town the rocks of Cretacoous age reappear at the surface where the Wasatch beds have been croded away. About 2 miles west of Echo a group of curious monment-like rocks, some of which are more than 100 feet high, may be seen to the right (north) of the track, well up the slope. These are known as The Witches (Pl. XXIV, A) and are remnants formed by the erosion of a coarse conglomerate. Although any rock that has a fancied resemblance to some familiar shape is likely to attract greater attention than many a more significant feature of the landscape, these bizare monuments are well worthy of more than a passing glance. The name "The Witches" is suggested by the form of the cap rock of one of the monuments, which is shaped something like the fabled witch's hat. (See Pl. XXIV, B.) The caps are formed from a light-colored band of conglomerate that is cemented into a harder mass than the underlying pink conglomerate. This hard cap rock protects the underlying beds from the rain until the supporting column, ly slow crumbling, becomes too slender to hold it. When the cap falls off the monument soon becomes pointed at the top and is finally reduced to the level of the surrounding country.
\({ }^{1}\) The mining camp at Park City is on the east side of the Wasatelh Range at an altitude of 7,200 feet, but some of the mines are nearly 2,000 feet higher. The sertimentary rocks of this district, ranging in age from ('arhoniferons to Triassir, were long ago compressed into a series of folds and broken by mommain-making forees and large portions of them were greatly displaced. Masses of molten rock known as quartz diorite and quartz diorite porphyry were then forced up into them from below. Later other masses of molten rock ralled andesite dowed over the surface.

The ores result from the older intrusions and oceur as compounds of lead, silver, 'opeper, zines, and other metals in lodes and fissure veins and as bedded deposits in the sedimentary rocks. The
more important lode deposits occur in two zones about a mile apart, known as the Ontario and Daty West zone and the Silver King and Kearns-Keith zone. These have been explored for several thousand feet (in length), and in the Ontario mine a fissure containing much valuable ore has been explored to a depth of 2,000 feet or more.

Ore was discovered in this distriet in 1869, but not until 1877 did the camp become an important producer. Since that time production has been continuous. The total reported output to the close of the year 1913 was gold \(\$ 3,959,132\); silver, \(\$ 91,336,065\); lead, \(\$ 47,602,156\); copper, \(\$ 3,587,247\); zinc, \(\$ 2,606,770-\) a total value of \(\$ 149,091,370\), of which \(\$ 38,753,126\) has been distributed as dividends.

A. THE WITCHES, NEAR ECHO, UTAH, AS SEEN FROM THE TRAIN.

A group of natural monuments carved by wind and rain from conglometate probably of Tertlary age.

B. SIDE VIEW SHOWING, ON THE BUTTE TO THE RIGHT, THE "WITCH'S CAP," WHICH SUGGESTED THE NAME FOR THE GROUP.

1. VIEW OF THE VALLEY OF VIEBER PIVER FROM WITCHES ROCKS.

On the monument at the left is a cup valich pactects th... rock undir it because its pebbles are cemented together mome fimily trian those buto.n.

Plate XXIV, \(A\), shows a monument (in the center of the group) that is lower than the others and worn to a sharp point at the top. The cap that once protected this "witch" now lies in a gulch at her feet. The other eaps will fall in time - probably after the lapse of centuries and The Witches, like their mythical prototypes, will disappear from the face of the earth.

Near Henefer the first company of Mormon emigrants, for some reason that is now hard to understand, left the Orerland Trail and chose the very difficult route up the creck that enters

\section*{Henefer.}

Elevation 5,409 feet. Population 413 . Omaha 964 miles. the Weber from the south. After crossing the mountains, they passed down Emigration Canyon to Salt Lake City. \({ }^{1}\)

To the right (north), near Henefor station, may be seen a gravel terrace rising 25 feet or more above the level of the roadbed. This was formed by the river at some former stage, probably during the time of high water in Lake Bonneville. (See pp. 97-99.) Although the gravels here are more than 200 feet above the highest terrace of the old lake, it seems likely that the diminished slope of the river during high water then eansed the stream to deposit in this part of its course the beds of gravel that now form the shelf on which the railroad is built west of Echo and that form the protecting cap of the bluff at Henefer.

The Cretaceous rocks which in Echo Canyon dip steeply toward the west under the red beds of the Wasatch group reappear with opposite dip west of Echo, but owing to the great quantities of gravel that cover the hillsides, derived by disintegration from the older conglomerates, these rocks can be seen from the train at only a few places. However, the broad, open valley that the route crosses west of Henefer is due to erosion of the soft (retaceous shales.

Three miles west of Henefer the coarse red puddingstone of the Wasatch beds extends down to the river level, and the broad basin-

\footnotetext{
\({ }^{1}\) It is possible that a little study of the earlier history of the Mormons may throw some light on this strange procedure. They had been driven from place to place in the States until they had decided to seek a place so far from settled districts that they would not be molested. When this first company, consisting of 140 men and 3 women, started westward in April, 1847, one purpose of their leader, Brigham Young, was to mark out a trail for the use of later emigrants. Rather than follow the Overland Trail, which had become fairly well known by this time, he chose a new and untraveled route that came later to be called the Mormon Trail. The
}
beaten path was avoided for two reasons. First, they wished to avoid their enemies, some of whom they would be sure to find on the older trail, and serond, they never traveled on Sunday and they made religious worship as much a part of their daily program as the trivel itself. In order to avoid trouble, as well as for the sake of being unmolested in their devotions, this first company marked out a new route through 1,000 miles of wilderness. The Mormon Trail parallels the Overland Trail and in some places where a different route was impracticable joins it, as, for example, at river crossings and in the mountain passes and eanyons.
like valley suddenly narrows to a gorge barely wide enough for the river to pass through. The road bed has been cut in the side of this gorge, and in the cuts may be seen great bowlders of quartzite, some of them 4 feet in diameter, with smaller bowlders, pebbles, and sand filling the space between them. These materials are cemented into a resistant mass by red oxide of iron, which gives a brilliant color to the whole mass. At the west end of this short gorge the red conglomerate overlaps rocks of Jurassic age, which have been upturned to a vertical position.

On emerging from the gorge, just before entering the town of Devils Slide, the train passes through a long cut in the shale of the upper part of the Jurassic and crosses Weber River

\section*{Devils Slide.}

Elevation 5,314 feet. Omaha 969 miles. at the point where Lost Creek enters it from the right (north). To the right also, in the Lost Creek valley, may be seen a large mill where limestone and shale are manufactured into Portland cement. \({ }^{1}\) These stratified rocks are all turned up into a vertical attitude. The soft shale is worn away by rain and wind faster than the limestone, which is left standing out as ragged vertical walls. The Devils Slide (Pl. XXV, B) is formed by two of these limestone reefs, about 20 feet apart, from which the shale has been eroded away, leaving them standing about 40 feet above the general slope of the canyon side. Many other reefs in this vicinity are equally prominent, but no others are so conspicuous from the train.

From Devils Slide westward to Morgan Weber River has cut a canyon through the Bear River Range. This broad range is by some geographers included in the Wasatch Mountains, into which it passes farther south. The sedimentary rocks of the Bear River Range consist of steeply inclined beds of limestone and sandstone and a subordinate amount of shale, ranging in age from Jurassic on the east to Ordovician on the west. (See table on p. 2.) The formations are all conspicuonsly exposed in the precipitous craggy sides of the canyon and may be seen to best advantage toward the right, in the north wall of the canyon. West of the town of Devils Slide the gray beds of the Jurassic Twin Creek limestone give place to a massive salmon-colored sandstone (Nugget sandstone) of Jurassic or Triassic age, west of which, and next older, are thin-bedded bright-red shales and sandstones (Ankareh shale), fossiliferous shaly limestone (Thaynes

\footnotetext{
1 The Jurassic limestone and shale of this. locality are utilized in the manufacture of cement, for which they are well adapted and conveniently located. The rock is blasted from the mountain side in quarries plainly visible from the train to the right (north) and passed downward through the mills, coming out at the bot-
}

(;EOLO(ill ANI) TOPOURAEHE MAP
()VERLANI) R()[TTE

 191.7 Ent avasmaner thew -. He mar who a rawe n parenthess in in Where tot noitree neve

limestone), and red sandstone and shale (Woodside formation), all probably of Lower Triassic age. The purplish-red sandstone layers of the Ankareh are beautifully ripple marked.

Still farther west appears the fossiliferous limestone of the Park City formation, of Pennsylvanian or Permian age. In the lower part of this formation are beds of black phosphate rock interstratified with beds of shale and limestone. The traveler can see some old prospect openings in the phosphate beds to the left, in the south wall of the canyon, just before the train enters the tumnel. These beds are portions of the great phosphate deposits of Utah, Idaho, Wyoming, and Montana, which form a large part of the nation's store of material available for making phosphatic fertilizers. (Sce pp. 127-129.)

West of the phosphate beds is the Weber quartzite, a thick formation of Pennsylvanian age which, because of its superior hardness and resistance to erosion, forms the crest of the Bear River Range. Most of the rounded quartzite bowlders and pebbles in the red conglomerate of Echo Canyon and of the gorge east of Derils Slide were derived from this formation.

The river has cut a winding gorge through the quartzite, and two of the projecting spurs of the craggy walls are pierced by short tunnels. At the eastern tunuel the strata, which farther east are nearly vertical, are bent into a knee-shaped fold that brings the beds west of the axis to an inclination of searcely \(15^{\circ}\).

The second tumnel in the Weber quartzite opens on the west into Round Valley, a circular basin hollowed out by the river in the relatively soft red sandstone and shale of lower Pennsylvanian age, known as the Morgan formation, becanse of its occurrence near the town of Morgan. These red beds are woll exposed in the north wall of Round Valley and also south of the railroad between this valley and Morgan.

Morgan is the center of a rich agricultural distriet that is especially noted for the fine quality of the peas which are raised here. From Morgan (see sheet 15, p. 102) about 90 carloads of

\section*{Morgan.}

Elevation 5,080 feet. Population 756. Omaha 976 miles. canned peas are shipped each year. The broad valley which makes this industry possible is due to the presence of soft rocks, in which the river has greatly widened its valley while it was cutting the narrow gorges in the hard rocks both east and west. These rocks once filled a basin lying between the two ranges of the Wasatch Mountains. East of Morgan rise the craggy slopes of the Bear River Range, through which the train has just passed, and which attains an altitude of 9,245 feet in Mount Morgan, north of the town. To the west may be seen the rugged crest of the main range of the Wasatch Mountains, which in this latitude consist entirely of granitic rocks of Archean age-that is, rocks which are older than the oldest sedimentary rocks that contain remains of plants or animals. (See table on p. 2.)

Just before entering Morgan the train passes close to the foot of a slope on the right (north) in which dark-colored limestone containing fossil corals and shells of early Carboniferous (Mississippian) age is well exposed. Farther west rocks of Ordovician and Cambrian age are exposed north of the track, but these can not be readily distinguished from the train.

The soft Tertiary rocks that occupy the basin west of Morgan may be seen to the right from the train, north of Peterson, where they appear as light-green to pink strata, slightly conglomeratic and inclined toward the east.

The station at Peterson is near the center of the basin just described. The basin was formerly occupied by a bay of the ancient Lake Bonneville, whose waters backed up through Weber Can-

\section*{Peterson.}

Flerat ion 4,892 feet. Population 277.* Omaha 9×3 miles. yon. (See pp. 97-99.) Along the margin of this bay, which was 300 feet or more in depth, sand and gravel accumulated in large quantitics. When the water withdrew from the basin these beach accumulations were left as a shelf, remmants of which lie about 300 feet above the railroad at many places on the slopes.

Many a "station" along the Union Pacific Railroad consists of nothing more than a signpost, but at Strawberry not even a post is visible. It is a switch for sidetracking cars to gravel

\section*{Strawberry.}

Elevation 4,842 feet. Omaha 9 L 5 miles. pits, which may be scen to the right, north of the railroad, and which furnish gravel for ballast. From many places near Strawberry the traveler may get good views of Mount Morgan, to the east, and of Observation Peak (over 10,000 feet above sea level), which lies to the north (right) and is here the most prominent mountain north of the railroad. To the left (south) rises the main mass of the southern part of the Wasateh Range.'

\begin{abstract}
\({ }^{1}\) The Wasatel is the eastemmost of the basin ranges. Although very complex in structure, it may be described briefly as a great block of the earth's crust that has been elevated at its western margin, so that it inclines eastward. Its tilting was made possible by a break of the crust in a nerth-south direction along what is now the western base of the range. The rocks that lie east of this line of fracture were pushed up many thonsands of feet higher than those that lie west of the line, this producing a great fault. Later the elevated part of the blork was eroded, so that now its surface is a complicated mass of rugged mountains, separated from one another by valleys, canyons, and gorges.
\end{abstract}

The western face of the range which was originally nearly straight and might have been a single cliff had it not been eroded, is still very precipitous and forms what is known as a great fault scarp. It is this western fault scarp that is so impressive as seen from Ogden and other points in the valley of Great Salt Lake.

The Uinta Mountains differ from the Wasatch Mommains in that they have resulted from the erosion of a broad arch whose axis trends east, nearly at right angles to the Wasatch axis. The Uinta is the westernmost of the Rocky Mountain ranges, which reach their maximum development farther east in central Colorado. The junction of this range with the

Just before reaching Gateway station the route passes abruptly from the open valley into the narrow \(V\)-shaped gorge cut by Weber River through this great range of mountains. Precipitous, craggy slopes rise on both sides and the scenery is varied and impressive. The river descends rapidly in this canyon and the power furnished by it is utilized by hydroclectric plants. Soon after entering the canyon the train passes to the left (south) of a diversion dam at which a large part of the water is turned into a pressure pipe 6 feet in diameter. From this pipe it emerges about 2 miles downstream, at an altitude 172 feet below the intake, at the power house of the Utah Light \& Railway Co., from which 5,000 horsepower is transmitted 35 miles to Salt Lake City. From the power house the water is carried by a canal along the south wall of the canyon to the turbines of a second power house, from which it is distributed for irrigating the lands of the valley below. The once worthless desert has thus been transformed to green fields and fruitful orchards which support a thriving community.

Toward the lower end of the canyon the river makes a sharp turn to the right through a rocky defile called Devils Gate. Instead of passing through this defile, the railroad is built, through a cut made in unconsolidated gravel which fills a former channel of the river. Apparently this old channel was filled during one of the stages of high water in Lake Bonneville (see pp. 97-99), and when the lake water withdrew the river was deflected to the right at this point and cut a new channel in the solid rock, making what the physiographer calls a young channel due to superimposed drainage.'

Wasatcll constitutes the transition between the Rocky Mountain ranges -modified arches whose axes have a northerly trend with a marked tendency toward westward deflection-and the Basin Ranges-tilted blocks, whose axes lave a regular northerly trend.
\({ }^{1}\) The behavior of the river at this point gives the key to an understanding of its course across the Wasatch Range. The river rises east of this range, but insteal of taking the seemingly easier course around the mountains, as Bear River did, it has cut its way directly through them. West of Echo it leaves the open basin-like valley and enters a narrow gorge mearly 2,000 feet deep. West of Devils Slite it enters a canyon cut to a depth of 4,000 feet or more through the Bear River Range. West of this range it crosses another open space and once more enters
a narrow canyon within whirh it passes through the main range of the Wasateh Mombtains.

In Tertiary time such valleys as may then have existed in this region were filled with gravel, sand, and silt, and praetically the whole region was aggraded or built up to nearly a common level. Over this plain the streams established their courses withont regard to the kind of rock beneath the surface. Weber River - hose the course of least resistance at that time, and when it deepened its channel and found itseli flowing directly arross the ridges of hari rock that now form the Wasatch Mountains it was too late to rhange. The energy of the stream has been sulficient to cut only narrow gorges in the hard rock, but in the softer rock it has excavated the broad valleys west of Echo and near Morgan.

On emerging from Weber Canyon the train crosses the line of the great fault by which the rocks on the east were uplifted many thousands of feet relative to those on the west. Here we

Uinta.
Elevation 4,497 feet. Populat ion 178.* Omaha 993 miles. enter a broad, fertile valley that is well watered by the river. If the traveler covered with alkali dust from the deserts farther east reaches this valley when the orchard trees are bending to the ground under their burden of ripening fruit he will not wonder that some of the inhabitants call it "Zion."

This valley has been eroded from a broad delta of gravel, sand, and silt built up by the river during the Pleistocene epoch, when the waters of Lake Bonneville covered the region. The form of the delta is not visible from the train, because the railroad follows the trench that the river subsequently cut in the old delta. The accompanying map (sheet 15, p. 102) shows that a gently sloping surface with Ogden near its center extends from Farmington nearly to Brigham, a distance of 30 miles, and from the foot of the mountains westward to the lake, a distance of 17 miles. This is the delta built by Weber and Ogden rivers and several smaller streams.

Two prominent beach lines are plainly visible on either side of the canyon. The higher one, known as the Bonneville terrace, is nearly 1,000 feet above the river and marks the level reached by the water when the lake was at its maximum height. The lower one, known as the Provo terrace, is 375 feet below the Bonneville terrace and denotes a later stage of the lake. From points at a considerable distance these so-called "water lines," some made by deposits of gravel and others by notches cut by the waves of Lake Bonneville in the hard rock, may be seen all along the western face of the mountains. (For a description of these terraces and the phenomena associated with them see pp. 97-99.)
The valley of Weber River, which appears so attractive in the vicinity of Uinta, is a small part of the Great Salt Lake valley, which includes a large part of northern Utah. This is the home land of the Mormons, and according to the historian Hubert H. Bancroft it is "a new Holy Land, with its Desert and its Dead Sea, its River Jordan, Mount of Olives, and Galilee Lake, and a hundred features of its prototype of Asia."

Ogden is the western terminas of the Lnion Pacifie system. Through passengers on the Overland Route here pass without change of cars to the Southern Pacific line which

Ogden.
Elevat ion 4,301 feet. Population 25,580. Omaha 1,000 miles. comnects Ogden with San Francisco. Passengers for Yellowstone Park change to the Oregon Short Line, and those for Salt Lake City \({ }^{1}\) have the choice of the Salt Lake \& Ogden electric road, the Oregon Short Line, or the Denver \& Rio Grande. The railroad time changes here from mountain to Pacific time, and the westbound traveler should set his wateh back one hour.

Ogden is the comnty seat of Weber County and the seeond largest city in Utah. It is said to have been named for an old trapper and was laid out under the direction of Brigham Young in 1850. Ogden has a variety of industries, owing in part to its grood transportation facilities and cheap electric power. Canning is one of the most important. In 1913 canneries adjacent to the city made an output of nearly a million cases (approximately \(24,000,000\) quarts) of fruit and vegetables, of which more than half was tomatoes.

Ogden lics at the foot of the Wasatch Mountains, which rise abruptly just east of it, and is on the border of the flat floor of Great Salt Lake valley, stretching away to the west. The business part of the city is on one of the later terraces cut by the waves of the

\footnotetext{
\({ }^{1}\) Salt Lake City, 37 miles south of Og den, is the capital of Utah and the seat of government of the "Church of Jesus Christ of Latter-Day Saints," whose adherents are commonly called Mormons. It is a city of 92,777 inhabitants, beautifully situated between the shore of Great Salt Lake and the lofty and precipitous front of the Wasatch Mountains. Many of the natural features are unique, especially the great lake of brine so salty that no fish can live in it and so dense that the bather floats on it like a cork on ordinary water. But this city is of interest mainly as the headquarters of the Mormon Church, which has grown so rapidly that in place of the 40 who organized it in 1830 it now has a membership of about 500,000 . Here are the Temple, the Tabernacle, and many other objects of interest. The city was founded in 1847 by the first company of Mormon emigrants under Brigham Young and was the point to which later companies came and from which
they went out to possess the land. The story of this migration and the establishment of the new sert in the wildeness is of absorbing interest. The fortitude with which these people endured hardships and suffering and their unwavering devotion to a fixed purpose compel admiration.

Bingham Canyon, the priucipal copper district of Utah, is easily reached from Salt Lake (ity. The ores occur mainly in limestone of Carboniferous age and in an intrusive igneous rock (monzonite forphyry) which cuts the limestone. The low-grade disseminated ores in porphyry are now more important than the ores in the limestone. In 1913 the disseminated ore mined, chiefly by steam shovels, amounted to \(8.300,000\) tons, yielding about 0.75 per cent of copper and some gold and silver.

The Park City and Tintic distriets, which produce large quantities of ores carrying chiefly lead and sitver, can also be visited from Salt Lake City.
}
ancient Lake Bomeville, described below by G. K. Gilbert, \({ }^{1}\) in an apron of mountain waste; the main residence section rises eastward
\({ }^{1}\) At Ogrlen the traveler is fairly within the Great Basin, and for 590 miles, until he reaches the crest of the Sierra Nevada, his course traverses a series of closed val-heys-valleys which resemble basins in the fact that all parts of their rims stand ligher than their middle parts. All streams of this region either lose their water hy direct evaporation or discharge it to some lake that serves as an evaporation ban. Some of the lakes have outlets, but every such outflowing stream Hows into another lake, and the final receptade has no outlet, all the water it receives escaping upward, into the air. No stream in the Great Basin finds its way to the ocean.

Great Salt Lake has no outlet. Jordan liiver, which enters it from the south, is the outlet of Utah Lake. Bear River, coming from the north, carries the outflow from Bear Lake. The waters of Utah and Bear lakes and of Jordan and Bear rivers are fresh, and so is the water of Weber River, the third great tributary of (Great Salt Lake, but the lake into which the three rivers flow is saline. It is saline because it has no outlet. The frewh waters of the rivers contain some saline matter, but the quantity is too small to be discovered by taste. As stated by the chemist, in parts per million, the quantity seems minute, but when account is taken also of the total volume of water brought by the streams to the lake in a year their burden of saline matter is fouml to be really great, amounting annually to more than 500,000 tons. Year by year and century by ceutury the water which they pour into the lake is evaporated, Jut the dissolved solids (an not escape in that way and therefore remain. They have accumulated until the lake water is approximately saturated, holding nearly as much mineral matter as it can retain in solution. The lake contains over 5,000 million tons of common salt and 900 million tons of Glauber's salt, or sorlium sulphate, as well as other mineral matter.

Another consequence of the lack of outlet is that the lake varies from time to time in size. Whenever the gain from inflow is greater than the loss from evaporation the level of the water surface rises; when the loss is greater it falls. Each year there is a rise, leginning in winter, when the cool air has little power to absorb moisture, and continuing through spring, when the rivers are swollen by the melting of snows in the mountains. Each year there is a fall, beginning in summer, when the hot air rapiclly absorbs the water, and continuing in autumn, when the rivers are smallest. This annual oscillation amounts on the average to about 16 inches.

In some years the rainfall and snowfall are greater than in others, and then the lake usually receives more water than it parts with, so that the surface is left higher than it was before. In a series of wet years the lake level progressively rises; in a series of dry years it progressively falls; and as the rainfall is irregular the fluctuations of the lake are conspicuous. Since definite knowledge of the lake began, in 1850, there have been five periods of increase and four of decrease. (See fig. 11.) The summer levels of 1868 and 1877 were more than 10 feet above the summer level of 1850 , and those of 1903 and 1905 were 4 feet below that of 1850 . The level of 1914 was 6 feet above that for 1905.
The land bordering the lake has in many places a slope so gentle that a small change in the height of the water surface makes a great change in the area of the lake. On a map completed in 1850 the area shown is 1,750 square miles; on a map made in 1869 it is 2,170 square miles. In the interval between the two surveys the lake had risen 10 feet, and this rise enlarged the area about 24 per cent. From the greater surface the evaporation was of course greater, and the dependence of evaporation on area is thus an important factor in regulating the size of the lake. The effect of a long series of wet years is somewhat reduced

to the level of the Provo terrace, which was built by this lake when its surface remained for a long time at an elevation about 625 feet higher than the present lake.
ly the resulting increase of evaporation surface, and the effect of a series of dry years is lessenel by the resulting reducfion of surface exposed to evaporation. This natural and antomatir control limits the range of oscillation and gives a certain permanence to what may be called a normal or average level. A change in the normal can occur only when some new factor is introduced.
Both man and mature have introduced new factors and thas have produced changes in the normal level. The oceupation of the surrounding region loy white men has recently modified the face of the land in ways that have a recognized intluence on the water level; and the ancient history of the lake includes enormons modifications in response to changes of climate.

Of human influcnces the most telling has arisen from the development of agriculture with irrigation. In irrigation the water of rivers and creeks is diverted to cultivated fields, which first alsorb it and then through evaporation feed it to the air; and the water thas consumed loy utilization is lost to the lake. With the gradual entargement of the irrigated area the normal level of the lake is inevitably being lowered, and engineers are already contident that the high-water mark of 1877 will never again be reached. On the other hand, there is no reason to expect the lake's extinction, for there is a limit to the possililities of irrigation.

The fresh water brought by the rivers mingles gradually with the brine, and as the river mout his are on or near the eastern shore, the brine is not so strong at the east as at the west. Analyses from samples of the brine gathered at different points and in different years report the dissolved solids ats from 13.7 to 27.7 per cent, by weight. A sample taken in August, 1914, contained 18.9 per cent of solids. At the present time the average salinity of the lake is about \(5 \frac{1}{2}\) times that of the ocean, and its density is 14.5 per cent greater than that of fresh water. Only with diffi-
culty can the bather keep his feet from rising to the surface, and if he balances himself in an upright position his head and shoulders are above the surface.

The brine is weakest in the northeastern arm, the portion visible from the train near Brigham. This arm has been partitioned from the main body by the embankment of the Southern Pacific Co. and is continuously supplied with fresh water by Bear River. Ice can form on the stronger hrine only in zero weather, but this arm is frozen from side to side every winter and sleighs have been driven across it.

The only climatic element with which the lake oscillations have been comnected by direct observation is precipitationthe lake rises or sinks as the fall of rain and snow is great or small-but it is easy to understand that the balance between supply and luss of water may also be disturbed by any change of climate which affects the rate of evaporation. As every laundress well knows, evaporation is favored by heat, by dryness of the air, and by strength of wind and is retarded by cold, hy moisture in the air, and by calm. So there are at least four ways in which changes of climate may cause the lake to expand or contract. The latest of the periods into which geologists divide past time witnessed a series of climatic changes which affected the whole earth, and though all the elements just mentioned were doubtless involved, the element which recorded its changes most clearly was temperature. There were several epochs of cold, and they were separated by epochs of warmth. During the cold epochs the high parts of the Wasatch Range held a system of glaciers, and in one of them several ice tongues protruded so far beyond the mouths of the mountain canyons that they heaped their moraines on the floor of Jordan Valley, only a few miles from the place where Salt Lake City now stands. In that epoch of cold the rate of evaporation was far slower than now, and evaporation was at so great a dis-

From the station at Ogden may be seen Observation Peak, 6 miles to the east, its top over 10,000 feet above sea level and more than a mile
advantage in its contest with precipitation that there was immense expansion of the water surface. When the lake was largest it was comparable in area and depth with Lake Michigan; it had eleven times its present extent. In attaining this great expanse the water surface rose to a position more than 1,000 feet above its present level.
To this great body of water geologisis apply a distinctive name, Lake Bonneville, and they have given much attention to its history, which is written in shore lines, deltas, channels, deposits, and fossils. The shore lines appeal most to the traveler, and may be seen from car windows at several points.
As a matter of definition a shore is merely the meeting place of land and sea or of land and lake, but as a matter of land form it is much more. At the shore the lashing of storm waves works changes in the land, giving it new shapes. At some places the land is carved away; at others it is made to encroach on the water. Where it is eroded the limit of erosion is marked by a cliff, and below the water is a shelf of gentle slope. Where additions are made they take the form of beaches or bars, which rise little above the water level and are composed of sand or gravel. At some places a bar spans a bay from side to side; elsewhere it is incomplete, projecting from a headland as a spit.
The waves of Lake Bomneville were as poweriul as those of Lake Michigan and fashioned the shore into an elaborate system of clififs, beaches, and spits; and when the waters finally fell to lower levels they left behind the shapes their waves had made. The base of each surviving shore clifi is a horizontal line, and so is the crest of each beach, bar, and spit, and these features in combination trace the outline of the old lake as a level contour about the sides of the basiu and the faces of mountains that were once islandsin the lake.
In rising and falling the waters lingered at many levels, and so there are
many ancient shore lines, but two oi them are more conspicuous than the rest and lave been named. The highest of all is the Bommevile shore line, and 375 feet lower lies the Prown shore line. The Bomeville line represents a relatively short stand of the water and is conspicuons chiefly because it marks the boundary of waveaction. All the slopesbelow it have heen more or less modified by the waves. Int the slopes above it retain the shapes which had been given them by other agencies. The Prown line represents a long stand of the water and is conspicuous because it is strongly sculptured.
In all the early history of the great lake its basin was closed, like that of the modern lake. The water surface rose and fell in response to climalic changes, like that of its modern remnant. The last great rising was the highest and terminated the series of oscillations ly creating an outlet. The lowest point of the basin's rim was at Red Rock Pass (90 miles by rail north of Ogden), and when the water rose above that level the stream which began to cross the pass descended to Portneuf River, a tributary to Snake liver, the chief branch of the Columbia. Through the creation of this outlet the Bonneville Basin, which had previously contained an independent interior drainage system, became part of the drainage system of the Pacific Ocean.
Red Rock Pass was not a mountain pass, a notch in a rocky crest; it was merely the highest point on the axis of a valley between two monutain ranges. Valley and ranges ran north and south and the valley was floored by alluvium washed from the ranges. From the Red Rock summit the valley sloped gently north ward toward the Portneuf and southward toward Bear liver. The formation at the summit consisted of soft earth, and as soon as overflow began a channel was formed. The deepening of the channel increased the volume of the stream by lowering the outlet of the lake, the greater stream was more efficient in deepening the chamel, and these two causes inter-
above the railroad. This is the culminating peak of the Wasatch Mountains (Pl. XXVIII, p. 104), a range that came into existence
acted until the stream became a stupendous torrent. The volume of water discharged before the flow became steady wats enough to supply Niagara River for 25 years, but the record of the torrent's violence leads to the belief that it lasted for a much shorter period.

The rapid deepening of the outlet channel was finally checked when the stream reached a sill of solid rock beneath the soft alluvium of the pass, and upon this sill the outlet rested for a long period. The lake surface then no longer oscillated in response to varying climate but held a constant level, and it was the long maintenance of this level which enabled the waves to carve and construct the Provo shore line.

The draining of the lake down to the Provo level reduced its area by one-third and correspondingly reduced the quantity of water amnually evaporated. Twothirds of the inflowing water was then disposed of by evaporation and the remainder was discharged through the outlet. Only a great change of climate could restore the balance between inflow and evaporation, and the change was slow in completion. At last, however, the pendulum of temperature swung far enough on the side of warmth. The outlet channel ran dry, the lake basin was again separated from the drainage system of the Pacific, and the lake began to shrink. So long as there was outflow the water was fresh, but when the outflow ceased there began that accumulation of salt which has made the water of the present lake a concentrated brine.

At times in the history of the lake, especially while the Provo shore line was being formed, the tributary streams brought down sand and gravel, which they dropped at their mouths, building deltas. When the water fell these deposits remained as fan-shaped benches having steep fronts. The streams that built them then dug channels through them. Part of the city of Ogden stands on a delta bench built by Ogden River.

Between Weber Canyon and Ogden the railroad follows the channel that was opened by Weber River through its former delta.

The climatic revolutions which created and destroyed Lake Bonneville wrought similar changes in all parts of the Great Basin. In Western Nevada the traveler sees the shore lines of another ancient lake, known to geologists as Lake Lahontan. It did not rise high enough to establish an outlet, but its water was so nearly pure as to be inhabited by freshwater shells. Some of its shores are marked by heary deposits of travertine. When it died away there remained in its basin a group of smaller lakes, some salt and some fresh, hut only one-Humboldt, a fresh lake-can be seen from the train.
The view from Ogden station is obstructed by buildings and trees, but by climbing to a near-by viaduct one may see the bold face of the Wasatch Range, across which the line of the Bonneville shore is drawn as a narrow pale band. On the shore bench grow the ash-green sage and other light-colored bushes, and the steeper slopes are mottled by darkgreen thickets of dwarf oak. The westbound traveler obtains a better view by looking backward just after leaving Ogden, and may probably recognize the Provo shore line as well as the Bomeville. These traces of old shores appear on Promontory Range and Fremont Island; and if the air is clear the traveler will have the old shore lines in view until he leaves the Bonneville Basin near Montello, 130 miles from Ogden.

On the route from Ogden to the Yellowstone National Park the old shore lines are prominently and almost continuously in sight until the train enters Bear River Canyon and may also be seen on a distaut range to the left. They reappear in Cache Valley, beyond this canyon, and are especially conspicuous at the left where their terraces surround a range of hills. At the Provo stage of the lake these hills projected above the water as
in comparatively recent geologic time and that has an interesting origin. \({ }^{1}\) [For contimation of ilinerary to San Francisco, see p. 148.]
a long island, and at the Bemerville slage as a chain of smaller islands. Beowech Oxford and Downey the railroad traverses the Red Rock outlet clamel, one of the stations, Swan Lake, being willin the channel. The modern streamlets, flowing from neighbring hills, have hrought down enough gravel and sand to build alluvial dams and have thus ohstructed the dranage of the old river bed, so that it now contains a series of ponds and marshes.
In quality of water and in temperature Lake Bonneville was as well fitted for abundant and varied life as the Bear Lake of to-day, and though the only remains yet found in its sediments are fresh-water shells, we need not dould that its waters teemed with fish. We may confidently picture its bordering marshes as fields of verdure and its bolder shores as forest clad; and we may less confitently imagine primitive man as a denizen of its shores and an cyewitness of the spectacular deluge when its earthen barrice was burst.
The only permanent animal inhabitant of Great Salt Lake is a tiny "brine shrimp," a third of an inch in length. A more conspichous temporary resident is a minute fly which passes its larval stage in the water, and when its transformation takes place leaves behind it the discarded skin. These flies are so numerous in their season that even the passing tourist should feel grateful that they do not bite. Their brown exuvie darken the water edge and often sully broad belts of the lake surface. More decorative denizens are gulls and pelicans, which find saie nesting ground on some of the smaller islands. There are no shoal-water phants, and the salt spray of the beach is fatal to all land vegetation along the shores.
When the lake is low its salt is segregated and deposited in shallow lagoons at its margin, to be relissolved when the water rises. Each autumn, as the water cools, deposits of hydrated solium sulphate (Glauber's salt) coat piles and wher
fixed objects near the water surface, and the deposits increase as the temperature falls. In the depth of winter large massers of this salt may beseen atherg the embank monts and trestles of the Lacin contofif. Calcinm rathonate, the mineral ronstifuting limestons, travertinc, and chalk, is contimonsly and pemanemtly sequrated irom the water, which is mable to retain that which is brought to it by the rivers. Along the shores it forms minate balls, which tugether comstitute sand, ab sand quite distinct from the siliceons samd of ordinary beaches.
Man makes little use of the lake. (on its shores there are neither fisheries nor ports, and commerce finds it an impediment rather than an aid. Its depmsits of Glauber's salt, which it offers for the gathering, are neylecterl beatuse tho world's demand is small and is cheaply met in other ways. Its common salt is harvested with great economy of effort, for impurities are easily excluded and the work of evapmation is performed hy the sun. The present ammal ontput of 40,000 tons musthemultiplicel fivefold before it can commence to weaken the brine. For the rest man is content to resort to its shore for hathing and to realize a new sensation as he floats upon its surface.
\({ }^{1}\) Most of the rocks in the Wasatcle Range were laid down ats sand and mud on the bottom of the ancient sata, where they lecame compacted and hardened into sandstome, shale, and limestone. The sea bothom eventually became lant. As mother earth has aged her skin has cracked and wrinkled. In the UtahNevada region many long cracks were formed and the rocks on one side or the oher were moved slowly upward or downward, forming long ridges along the (racks, steep on one side and gently slop)ing on the other. such breaks in the earth's crust are called faults. A fault may be a few feet or hundreds of miles long, and the distance which the rock beds on one side slip past those on the other may range from a fraction of an inch

To see the structure of the Wasatch Mountains, the traveler should make a side trip to the local scenic attraction, Ogden Canyon, which can be reached by street car from Ogden station. In Ogden Canyon. bright afternoon sunlight it can easily be seen that the face of the range is divided into bands of different rock formations. (See Pl. XXVIII, B, p. 104.) Observation Peak itself is a mass of pink rock called quartzite. This rock was a widespread bed of sand which was laid down on the bottom of the sea about the time the earliest forms of life appeared on the earth. How it reached its present position has been explained in the preceding footnote. A dark band of rocks, partly concealed by brush and timber, lies below the peak. In a spur much lower down the mountain is another band of pink quartzite which makes a 1,000 -foot wall and rests on a dark band similar to the one above it. This pink rock is a part of the same formation as that at the peak, the repetition being due to breaking of the earth's crust and piling up of the fragments. In fact the structure of the mountains at Ogden is not unlike that of the cakes of ice in an ice jam.
to thousands of feet. When the rocks on one side are shoved up over those on the other side the break is called a reverse or overthrust fault. (See fig. 12.)
period of slow earth movement which made these mountains flat-lying paralle? beds of rock were locally turned on edge, crumpled, and folded in a wonderfully

b

Figure 12.-Diagram showing normal faults (a) and a reverse or overthrust fault (b).

In the region now occupied by the Wasatch Mountains a number of parallel faults were developed close together and the broken pieces of the earth's crust between them were pushed up, the rocks on
intricate manuer. These upturned and crumpled rocks are well exposed in Ogden Canyon. The west face of the Wasatch Range is believed to mark the plane of a normal fault (fig. 12) at a nearly vertical

Figure 13.- Diagrammatic structure section of the Wasatch Range iu Ogden Canyon.
whe vide of each crack riding up over those on the othor side until at great moundain range was formed where once lay a plain. The arrompanying diagram (fig. 13) illustrates the structure of the Wasatch Range in cross sertion. During the long
crack in the earth's crust, the rocks on the east side of which went up or those on the west side went down. The forces which have raised these mountains are still active, for movement along this fault has disturbed the surface recently.

A. Z-SHAPED FOLDS NEAR EAST END OF OGDEN CANYON.

The lines follow the outcrop, of the folded beds.

Li. RECENT FAULT SCARP AT THE MOUTH OF OGDEN CANYON.

VIEVI IN OGDEN CANYON BELOW THE NARROWS.
Looking upstream to gap cut in Cambrian quartzite.

Just before reaching the mouth of the canyon the traveler may see a nearly perpendicular hlufl or scarp, a few feet high, at the top of the bank above a gully a fow rods southeast of a single-arch concrete bridge. This small bluff, which was made by recent uplift along a great fault that parallels the momen from, is best seem from the higher bench land. (See Pl. XXVI, 13.)

The steep face of the mountain rangerepresents the exposed exges of geologic formations whose continuation west of the fant is now far below the level of the plain. The mouth of the canyon is in very old, greatly distorted rocks (Archean gneiss and schist) which were formed before life began on the globe. Warm springs issum near the bridge below the mouth of the canyon, and where the trolley road passes over a steel bridge just inside the canyon a warm spring in the south bank of the river steams forth from the contact between pink quartzite and somber-colored gneiss. The water is salty, contains ron, and has a temperature of about \(136^{\circ}\) Fuhrenheit. Rounding a urve brings into view a waterfall which shoots out from tho rocks averal hundred feet above the track and turns to spray. The water collects on the rocks below and cascades into the river. This is an artificial fall, made by a hole in a flume that carries water to a hedrolectric plant. Close to the foot of this fall the bedrock wall of the canyon is plastered by a deposit of thoroughly cemented gravel, a remnant of the material that choked the canyon when Lake Bomeville backed up into it. \({ }^{1}\)

The canyon at this point is very narrow, and there is barely room for the highway on one side and the trolley-car tracks on the other side of the river (Pl. XXV1I). The mountain walls that rise thousands of feet above appear almost insurmountable, and directly ahead they seem to completely block further passage upstream. But a little turn shows a thin notch cut by the river through a great mass of quartzite beds standing nearly on edge. This is the same pink formation as that in Observation Peak, and its presence and position

\footnotetext{
\({ }^{1}\) G. K. Gilbert describes this material as follows:
"The lower part of the canyon through its length, but especially near its mouth, is more or less lined with heavy beds of coarse gravel, thoroughly consolidated by a ferruginous cement. In some flaces this forms the bed as well as the banks of the stream; but at others it is cut through, and the original well-worn rock bottom of the old channel is exposed beneath the gravel by the side of the road. It is evident that when this canyon was originally excavated the G.eat Salt Lake was not far if at all above its present level; so that the rushing torrent which wore out this
old rounded bottom met no check until it harl passed entirely beyond the mouth of the canyon. There followed a time when the lake filled nearly or quit. to its highest terrace; and meanwhile the Ogden River continned to bring down the sand and pebbles which it had before been accustomed to sweep out upon the lower terrace, but now, checked by the rising lake, deposited them in the lower parts of its old channel, until they aceumulated to a rery high level, not yet accurately located. Again the lake relired and the stram again cut down is channel, sometimes roaching its whl level ant sometimes not."
}
here show how much these rocks have been turned from their original flat-lying position. The nearly vertical slitting or gashing of the rocks is merely the result of weathering between the original beds of sand as laid down on the sea bottom. The passage is narrow because of the great hardness of the rocks, for the whole valley, like most other valleys, has been made by the gradual washing away of material by its stream and is narrowest where the rocks are hardest. Above the narrows the valley walls are limestone and shale, which are more easily worn away than the quartzite. A limestone quarry and kilns are situated just above the narrows on the south side of the river.

Farther up Ogden River (which, by the way, would be called a brook or run in some parts of the country) city people have built summer homes along the stream bank.

In 1914 the trolley line ended 7 miles from Ogden at The Hermitage, a rustic hotel built of logs and stone. The verandas of this hotel afford a vantage point for enjoying the rugged canyon scenery. \({ }^{1}\)

About a quarter of a mile east of The Hermitage, in the south wall of the canyon, a few feet above the river, the limestone is folded. The position of the thin strata, once nearly horizontal throughout but now turned abruptly back on themselves, suggests something of the stresses that have had a part in forming these mountains. A mile farther along in the road cut, near a flume that crosses the river, there is a very distinct \(S\) fold in black shales that indieates even more vividly the complexity of the mountain-making process. Some of this black shale contains phosphate. \({ }^{2}\)

\footnotetext{
\({ }^{1}\) Ogden ('anyon was cut in the solid rock by the river which now flows through it. Running water carrying sand and gravel acts as a saw or file and, given time enough, can cut through the hardest rocks. Ogden River was flowing west along its present course before the Wasatch Mountains came into existence. The raising of the mountains went on slowly for ages, so slowly that the river kept its place by cutting down its everrising bed, carving a deep and narrow (anyon straight through the block of the earth's crust as it rose. In no other way can we accennt for a river rising on one side of the range and flowing directly acrose it. Movement of the mountain. mass has continumd down to the present fime-at least there has been recent disturbance along the base of the Wasatch langer, as is shown by fanles whide travare the lake deposits and the modern alluvial aprons. Some of the breaks are
}
so new as to be devoid of vegetation. Furthermore, the main stream channels crossing from the uplifted fault block to the undisturbed rocks on the west have abnormal profiles. Ogden River has a high gradient within the canyon, but on crossing the fault and emerging on the gravel fan at its mouth at once loses grade. The upward movement of the mountains has been so continuous that the river has had no opportunity to widen its valley, a task which it will begin as soon as the mountains cease rising.
\({ }^{2}\) In a roadside ledge about 2 miles below the upper end of Ogden Canyon there is some black shale and limestone, which proves on analysis to be decidedly phosphatic. The richest material is contained in two beds of black shaly rock, each about 2 feet thick. Analysis of a random sample gives 42.5 per cent of bone phosphate. This dejosit is too low in grade and too broken to be of value.

The most prominent rock folding in the canyon is at the reservoir about \(2 \frac{1}{2}\) miles above The Hermitage. Here a thick bed of limestone is crumpled into a \(Z\) fold, measuring 1,000 feet between the top and bottom bars, which are about half a mile long. It can be seen plainly from the south bank of the reservoir. (See Pl. XXVI, A, p. 100.) This great wrinkle was made by the shoving of one mass of rocks over another during the formation of the mountain range.

At the upper end of Ogden Canyon, 10 miles from the city, is Ogden Hole or Ogden Valley, which, when Lake Bonneville reached its highest stage, was a small bay connected with the lake by a strait in Ogden Canyon.

\section*{OGDEN, UTAH, TO YELLOWSTONE, MONT.}

The route described in the following pages covers a distance of 291 miles on the Oregon Short Line Railroad from Ogden, Utah, across southeastern Idaho to Yellowstone, Mont., the west entrance to Yellowstone National Park, \({ }^{1}\) a public playground covering about 3,348 square miles. For 40 miles north from Ogden the road lies along the boundary between the Wasatch Mountains and the recgion once known as the Great American Desert, following the shore line of Lake Bonneville, a great body of fresh water that in geologically recent time covered a large part of Utah (pp. 97-99); then after turning eastward and passing through the range in a rocky canyon, it goes northward across a flat stretch of country which was the floor of a bay of the former lake. This bay was surrounded by mountains, and the railroad follows the foot of a north-south range to the head of an arm ni the bay.

About 90 miles from Ogden the railroad crosses Red Rock Pass, through which for a time Lake Bonneville drained to the north, and \(t^{1}\) len runs down a valley between two mountain ranges. In this valley the track for miles is on the surface or along the edge of a black ' ra flow. Turning west and passing through a notch in the Bamock aunge, it comes out at Pocatello, 134 miles from Ogden, on the great Snake River plain. From Pocatello north for 100 miles the way leads \(\therefore\) ross another lava flow, once a sagebrush waste, now an agricultural
radise. The last 50 miles of the route is through forests and finally over the Continental Divide, in mountains of volcanic rock poured out in the vicinity of Yellowstone Park.

The northbound trains, on learing Ogden, cross Ogden River and come at once into orchards and into fields of sugar beets, hay, corn,

\footnotetext{
\({ }^{1}\) Mileposts from Ogden to McCammon and from Pucatello to Idaho Falls give the distance north of Ogden; from McCammon
}
to Pocatello, the distance west of Granger, Wyo.; and from Idaho Falls to Yellowstone, the distance north of Idaho Falls.
and garden truck. From the outskirts of the city an uninterrupted view of the Wasatch Range can he had (Pl. XXVIII). Ogden Canyon is seen as a great notch with bare cliffs of pink quartzite on both sides, and tier on tier of gray limestone farther up the canyon. \({ }^{1}\) In the distance on the west is the hazy blue outline of Promontory Range, a long point extending from the north out into Great Salt Lake.
The traveler who is for the first time west of the Rocky Mountains and wonders if the melodramatic activities of western life he has seen quivering on the "morie" screen really exist to-day along the route between Ogden and Yellowstone Park should remember Francis Parkman's introduction to "The Oregon Trail":
The buffalo is gone, and of all his millions nothing is left but bones. Fences of barbed wire supplant his boundless grazing grounds. Those discordant serenaders, the wolves, that howled at evening about the traveler's camp fire have succumbed to arsenic and hushed their savage music. The wild Indian is turned into an ugly caricature of his conqueror. The slow cavalcade of horsemen has disappeared before parlor cars and the effeminate comforts of modern travel. The all-daring and allenduring trapper belongs to the past and the cowboy's star begins to wane. The wild West is tamed.

The great desert which Frémont explored in 1842 and to which the Mormons came in 1847 is still a desert, but orchards, gardens, and grain fields now mark its border.

A large brick plant at Harrisville (see sheet 15a, p. 114) is using clay that was deposited as sediment on the bottom of Lake Bonneville. This is one of the few mineral industries along this Harrisville. route. Many years of prospecting in the mountains

Elevation 4,297 feet. Population 395.* Ogilen 5 miles. all the way from Ogden to Yellowstone Park have brought to light a few small metalliferous deposits, but not one from which ore is being shipped. Among the nonmetals clay, sand, gravel, limestone, marl, coal, building stone, and water are utilized. Water is the one mineral to which above all

\footnotetext{
\({ }^{1}\) The geologic structure of the Wasatch Mountains, from Ogden north to Brigham, has been described by Eliot Blackwelder as "shinglexl structure with overthrust slabs or wedges dipping eastward." (See fig. 13. 1. 100.) Although this structure ran not be sex.ll from the railroad, the varions fomations can be distinguished. At the hase of the range, showing above the lake benchere, is the oldest rock formation hore \(\cdot x p m e d\), the Archean gneiss and swist, making dark-colored ragged ledges. (hue I'l. XXVIII.) Above this is 1,000 fore of hare rock cliff of pale pink or fallod imon-stain color, the ('am-
}
brian quartzite. Next higher, under brush and scattered trees, are ledges of gray limestone; then comes the pink quartzite again, and at the top a thick band of gray limestone. In the morning smlight the west face of the range is somber and does not reveal the striking differences in these formations, but under the light of the afternoom sun they stand out in marked contrast.

The ('mmbrian quartzite can be traced by the eye from Ogden (anyon northward for several miles, but not continuously, for the rocks are broken by east-west as well as north-south faults.
u. S. GEOLOGICAL SURVEY

A. west front of wasatch range at ogden, utah.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{12}{*}{}} \\
\hline & \\
\hline
\end{tabular}
1. DIAGRAM SHOWING GEOLOGY OF MOUNTAIN MASSES IN .1.

1. LAKE BONNEVILLE SHORE AT BRIGHAM, UTAH.

1: CAMERIAN QUARTZITE RESTING ON ARCHEAN GNEISS NEAR WILLARD, UTAH.
others is due the prosperity of the country trasersed hy this route. Rock phosphate is a vast potential asset but is not yet used.

North of Harrisville a low ridge, strewn with many large angular blocks of rock, both white and pink, projects from the momntain front nearly to the railroad. This ridge is made of a great block of quartaite and limestone broken in two, the 1 wo parts standing on afge. I stone crusher working on one of the limestone ledges makes macadim for the highways.

The electric-car line between Ogden and Brighan and the main highway from Utah to Idaho are east of the track. There is a tomatocanning factory near Harriscille. Tomatocs are grown extensively all along the foothills between Ogden and Brigham, and in 191:3 Brigham packed 30,000 cases, 24 cans to the case.

Just before reaching Hot Springs the train passes from Weber to Boxelder County and leaves behind the last saloon on the route, the country from Hot Springs to Yellowstone being "dry.

The Utah Hot Springs hotel and sanitarium is a bathing resort that has some reputation for the relief of rhematism. It is equipped with an open-air concrete pool 125 feet square, two indoor

\section*{Hot Springs.}

Elevation 4,271 feet. Ogden 9 miles. pools 28 by 45 feet, several smaller pools, and private baths. Small circular stone walls inclose the springs, which are just south of the station. The water, which is strongly charged with salt and other minerals, has a temperature of \(131^{\circ} \mathrm{F}\).

In this region there is a close relation between hot springs and lines of faulting. The temperature of the earth increases about \(1^{\circ}\) with every 50 feet of depth below the surface. Along the faults rocks which formerly were buried deeply and were therefore hot are now at the surface and water coming into contact with them a short distance below the surface, where they are still hot, is warmed; or the heat of the rocks may be due to friction along the fault plane.

Soon after passing Hot Springs the train runs close to a lagoon on the edge of Bear Bay, the northeast arm of Great Salt Lake. This lake, as is shown on pages \(97-99\), is a remmant of the much larger Lake Bonneville. Patches of white alkali (sodium sulphate and sodium chloride) may be seen along the edge of the lagoon and are due to the evaporation of salty water rising by capillary attraction.

A belt of land of varying width west of the railroad is in grain and pasture, but a strip close to the water is too salty to cultivate. The lagoon near Willard is often dotted with ducks and a flock of great white pelicans may usually be seen on the shore of the hay. The marshes and lagoons along the edge of the lake afford good hunting and many of them are owned by gun chubs.

The steel towers between the track and the lake carry the Utah Power \& Light Co.'s high-power electric-transmission line, which extends from the Grace hydroelectric plant in Idaho to Salt Lake City.

On the east there are peach orchards, and back of them is the Wasatch Range, culminating in Ben Lomond Peak ("Willard Peak" of the Fortieth Parallel Survey). The terraces of Lake Bonneville, carved in mountain waste deposited along the base of the range, are well preserved, and above them is the dark, rough-weathering gneiss. The Cambrian quartzite is very conspicuous here, forming a great pink band that extends far up the mountain side. The overlying limestone and shale, by reason of their softness, have weathered farther back than the much harder quartzite.

Willard is a quiet old village, its main streets lined with poplars and its homes surrounded by orchards. The principal industry is the growing of peaches and tomatoes. The traveler

Willard.
Elevation 4,260 feet. Population 577. Ogden 14 miles. who goes north to Ycllowstone Park from Ogden will see many villages that were started by Mormon emigrants. Some of them are at the mouths of mountain canyons, where perennial streams afford water for irrigating the arid land near by. Willard was located near such a mountain stream, as were also Brigham, Wellsville, Logan, and other towns in this region.

From Ben Lomond northward the pink Cambrian quartzite slopes down abruptly (Pl . XXIX, \(B\)), crosses the mouth of a sharp canyon back of Willard, where a stream leaps over it in a beautiful fall, and disappears under the terraces. The crest of the range also becomes lower, and the front of the range as far as Brigham shows older rocks (Algonkian quartzite and slate) thrust over the Cambrian. A short distance north of Willard Canyon the mountain face changes from hare crags to a fairly smooth grassy slope because the underlying rocks decay, so that the bedrock is covered by rubble in which vegetation soon gains a foothold.

North of Willard the old lake terraces are well preserved and peach orchards become more numerous. Among the trees in the distance is seen the white tower of a church in Brigham.

The first permanent settlers came to the mouth of Boxelder Canyon in 1853 and named the site of Brigham for their leader, Brigham Young. The Greens, Hunsackers, Johnstones, and

Prigham.
Elevation 4,307 feet. Population 3 , 6 is. 5 . Wylen 21 miles. Harrises were courageous folk, and although the level country was a great desert covered with sagebrush, they saw the advantages of the location, diverted the mountain stream into irrigating ditehes, and transformed the desert into a veritable garden.

Brigham stands on a delta built in Lake Bonneville when the water wats rising to the Provo level. (See p. 98.) When the lake wats at its greatest height at the Bomeville level, the water extended back through Buxelder Canyon, drowned the river and made a bay
of Mantua Valley, which lies within the range. During this time much of the material washed from the mountains around Mantua Valley was deposited in that valley and not carried throught the canyon, which at that time held a quiet strait instead of a rapid stream. As the lake dried up the waves on its lowering surface cut terraces on the old delta, and a new Boxelder River came into existence and wore a channel down through the delta its ancestor had buitt. In summer Brigham, which is sometimes called Peach City, is almost completely hidden in peach orchards. The trees grow luxuriantly, because practically every street has an irrigating ditch for its entire length. About 400 acres of land beyond the reach of ditches from the canyon is irrigated from a score or more of wells pumped by electric motor. Brigham has celebrated Peach Day carly in September annually since 1907. Peach Day is to Boxelder County what the 24th of July is to the State of Utah and the 4th oif July to the Nation. On that day there are free peaches and plums and melons for all the thousands of people who visit the city. In 1913 this station shipped 467 cars of peaches. Tomatoes also are grown in large quantities. A factory near the station cans in the height of the season 60 to 75 tons of tomatocs every day.

The old transcontinental railroad line of the Central Pacific went west from Brigham over Promontory Range and around the north end of Great Salt Lake. It is little used now, for the trains go from Ogden straight across the lake. Brigham is the southern terminus of the Malade branch of the Oregon Short Line, which serves the west side of the Bear River valley.

As the train leaves Brigham going north the traveler gets a fine view of old lake beaches along the face of the mountain. (See Pl. XXIX, A.) The upper or Bomneville terrace is particularly conspicuous on each side of Boxelder Canyon.

A few miles to the west is Little Mountain, an isolated butte composed of limestone containing abundant fossil coral and shells. This butte was a small island when Lake Bonneville was at its greatest height. Six miles west of Brigham is Corrine, a station on the old main line of the Union Pacific Railroad, from which freight was hauled by wagon to the mines of western Montana in the early days. Then it had a population of nearly 5,000 , but now it is only a small settlement. From Brigham to Idaho Falls the railroad parallels the road made by the freighters from Corrine. About 4 miles north of Brigham the railroad crosses Boxclder Lake, a small area covered with 1 inch or 2 inches of water, in which gulls, snipe, and plover are usually wading about. A State law prohibiting the killing of sea gulls at any time was passed many years ago, when these birds saved the emigrants' first crops from a scourge of grasshoppers.

Just beyond this lake is Bakers sidetrack and the plant of the Ogden Portland Cement Co. This company owns a large area which was supposed for many years to be worthless on

Bakers.
Elevation 4,222 feet. ogden 25 miles. account of alkali, but which on testing by drill holes was found to be underlain by 2 to 8 feet of marl, a limy earth, averaging 85 per cent lime carbonate, beneath which is a bed of clay-an especially valuable combination, for the two materials together have the proper chemical composition for making Portland cement, and for a number of years the plant has been using them successfully. In 1914 it had an average daily production of 700 barrels. The company supplied some of the cement for the Arrowrock dam, built by the United States Reclamation Service near Boise, Idaho.

The broad brown and gray striping of the rugged mountain face north of Brigham is due to alternating shale and limestone formations.

At the 28 -mile post the railroad passes under a steel transmission line carrying electric power from the plant of the Utah Power \& Light Co. in Bear River canyon.

The residents of Honeyville are principally descendants of Bishop Abraham Hunsacker, the original settler, who was the father of 52 children. The name of the town is a euphonious

Honeyville.
Elevation 4,266 feet. Ogden 30 miles. corruption and shortening of Hunsackerville. About 2 miles north of Honeyville, in fields east of the railroad, are some weed-grown pools formed by hot springs that have been known for many years, though no commercial use of the water has yet been made. The water is salty, and strongly impregnated with iron and is described by a neighboring rancher as being "hot enough to scald a pig." Frémont reported the temperature of these springs at \(134^{\circ}\) Fahrenheit in 1843, and Gilbert found them varying from \(121^{\circ}\) to \(132^{\circ}\) in 1872 . The discharge from the hot springs, mixed with water from cold springs in the same gully, is used for power at a gristmill on the bank of Bear River \(1 \frac{1}{2}\) miles west of Honeyville.

This part of Bear River valley is a former sagebrush desert that has been changed by irrigation \({ }^{1}\) to a thriving agricultural district in which

\footnotetext{
\({ }^{1}\) To readers who are not familiar with irrigation a briof explanation may be of interest. The common practice is to seloct a site at the edge of the mountains, where, by throwing an inexpensive dam across a stream, the current may be diverted a little to one side, into a ditch where a headgate is placed and made secure by the use of bowlders or concrete. Turing the winter and high-water seasons the gatr is kept closed, so that no water
}
flows into the ditch, but in the dry season the gate is opened and a part of the stream is diverted from its natural channel. The headgate is, of course, far enough upstream to be at a higher altitude than the land to be irrigated, and the course of the ditch is determined by a more or less careful survey, so that it will have a uniform grade of a very few feet to the mile. As many of the streams of this region fall more than 100 feet to the mile, the height
large quantities of grain, alfalfa, sugar beets, potatoes, tomatoes, onions, and other vegetables are raised. It is said that this land has produced, per acre, 15 to 60 bushels of wheat, 65 to 135 bushels of oats, 50 to 95 bushels of barley, 6 to 8 tons of alfalfa, and 10 to 40 tons of beets. Apples, apricots, peaches, and plums are the principal fruits raised.

Madsen is only a siding and beet-loading platform. On the west is the cut bank of Bear River, which has carved a

\section*{Madsen.}

Elevation 4,298 feet. Ogden 33 miles. meandering course in the old lake bottom. The river is sluggish here, having nearly reached the level of the present lake, though several miles from it. As the train approaches Dewey prominent lake benches are seen on the mountain side.

Three excavations on the hill a short distance back of Dewey were made in obtaining limestone for a million-dollar beet-sugar factory. Lime is used for removing various impuritics from the

\section*{Dewey.}

Elevation 4,323 feet. Population 292.* Ogden 36 miles. beet-sugar juice. The four smokestacks of the factory can be seen about 3 miles to the west. To serve this sugar factory was the purpose of the branch railroad from Brigham to Malade. Sugar-beet growing is a large industry in this part of the valley, the area cultivated being 5,000 to 7,000 acres and the average production per acre 18 tons of beets. The factory can handle 600 tons of beets daily. It is on the edge of Garland, a village with a population of 800 , which
of the ditch above the valley bottom increases domnstream, and for this reason in many ditches the water seems to be running uphill. As the upland inclines in the same direction as the stream, it is possible, without using any hoisting device, to locate the ditches so that water diverted from the stream at a certain point will flow out on the upland farther down-stream-indeed, water can be carried in this way from one stream over a divide and down into another valley.

At the place where the water is to be used an opening is made in the downhill side of the ditch and the water is allowed to flow out over the land. In grain and hay fields care is taken to keep the water spread out in very thin sheets, by throwing earth in its pathway wherever there are little depressions in the surface and the water shows a tendency to get deep. In gardens and orchards the water is caused to flow down furows between rows so arranged that it does not flow so fast as to wash away the soil. The immense
acreage devoted to potato raising along this route is irrigated in this way.

On a perfectly level field it would be impossible to make use of this method of irrigation, but western fields usually have more or less slope, and hence it is possible, by guiding the water in its natural downward flow, to keep it spread out over the land either as a thin sheet or as little rills in closely spaced furrows. It is customary to allow the water to flow gradually across a field until it reaches the lower side, and then to stop up the opening in the ditch and make a new one near some other place which it is desired to irrigate. The time required ior the water to reach the downhill side of a field is commonly several days, because the land absorbs so much of it.

In actual practice the method of irrigating is more complicated than that outlined here. According to the practice generally followed the water is not taken directly from the main ditch but from a branch.
was named for William Garland, of Kansas City, the contractor for the construction of the irrigating canal through Bear River canyon.

The red color on the mountain side opposite Dewey is produced by a mixture of blue, gray, red, and pink limestone and limy sandstone. Just north of Dewey the traveler gets the first glimpse of Bear River, the largest stream draining into Great Salt Lake. This river has an interstate habit; it rises in southwestern Wyoming and is crossed by the Union Pacific Railroad near Evanston, flows northwestward into Utah, back into Wyoming, crosses into Idaho, and eventually turns southward to empty into Great Salt Lake. It also drains Bear Lake, a body of water 20 miles long lying across the Utah-Idaho boundary near the Wyoming line. \({ }^{1}\)

Irrigation is practiced throughout the length of Bear River valley wherever it has been possible to divert water from the stream at a reasonable cost.

Between Dewey and Collinston may be seen three conspicuous wave-cut terraces 300,500 , and 640 feet above the track; the uppermost one is the Bomeville and the lowermost the Provo terrace. Several miles to the west on a clear day the parallel beaches can be seen on the lower gentle slope of Blue Spring Ridge. Just before reaching Collinston the train leaves the flat lake floor and ascends through gravel cuts in an uneven surface to a slightly higher level.

Collinston is a small settlement surrounded by grain fields. Lake terraces, like gigantic music staves engraved on the mountain, are beautifully preserved in this vicinity. The rocky

Collinston.
Elevation 4,416 feet. l'opulation 114.* Ugden 40 miles. knob just beyond the station is gray conglomerate (gravel and sand cemented together) of Tertiary age, carrying an abundance of fossil snail shells. This rock is very young in comparison with those found in the Wasatch Range and is the remnant of a once extensive body of gravel and sand which was deposited in a fresh-water inland sea that covered this area just prior to or during the uplifting of the mountains. Though geologically young, the rock in this knob is nevertheless hundreds of thousands if not millions of years old, and ever since its formation was completed and the lake was drained it has been subjected to the washing of the streams which have crossed it, so that much of it has been worn away. It has also been affected by movements within the carth, as is shown by the fact that its once nearly horizontal layers are now tilted and broken.

North of Collinston the railroad climbs by easy grades still higher abure the plain, across which winds the deep-cut trench of Bear River.

\footnotetext{
\({ }^{1}\) The mean discharge of Bear River He:ar Proston, ldaho, is 1,290 second-feet (thatt is, 1,290 (ruhir foet of water a sec(104). The fotal estimated possible power
development on Bear River in the State of Idaho with the aid of storage is 81,500 horsepower. Three hydroelectric power plants are in operation on the river.
}

The broad valley continues northward and is oesupied by Matade River, but the railroad turns castward and goes through a canyon cut ly Bear River across a low pass in the Wasateh Range.

The Utah-Idaho Sugar Co's cimal, whieh irrigates the west side of the lower Bear River valley, is seen on the far side of the river :und the Hammond canal on the near side. Although these eanals appear to climb toward the west, they aetually deseend in that direetion, for the irrigator has not yet learned how to get aromed gravitation without lifting devices, and in Utah, ats exerywhere else, water runs downhill.

The Utah Power \& Light Co.'s 4,000-horsepower electric plinnt, with

\section*{Wheelon.}

Elevation 4,499 feet. Ogden 44 miles. its great flumes taking water from thest camals, is on the river bank at the mouth of the canyon. The railroad station was named for John C. Wheclon, a eivil engineer who constructed part of the cimal.
Such scenery as that for the 2 miles above Wheelon is to be found at no other place on the railroad between Ogden and Yellowstone. Here is one of the two tumels on the route; here are the highest trestles and the sharpest curves. With a great flume of water just below the track and Bear River roaring over bowlders that impede its progress along the canyon bottom 175 feet below, this is no place for speeding; and yet the time consumed in going through the canyon is so short that one can only glance at the numerous interesting geologic features. It is easy to see that the narrow canyon, with its high precipitous walls, is cut in limestone whose beds dip about \(25^{\circ}\) to the west; but there is little likelihood that the traveler will notice the cavities made by solution of the limestone or the numerous small faults which break the normal continuity of the rock beds. He will, however, be attracted by a waterfall made by the overflow from a flume below the track and by the low falls in the river.

At the upper end of the canyon, just below the dam which diverts the water of the river into flumes, pink quartzite is exposed below the limestone. Above the dam green Tertiary shales are seen in the opposite wall. These shales are the hardened mud which was laid down on the bottom of a lake that covered this area before the mountains were formed or while their elevation was in progress. That they are older than Lake Bonneville is shown by their continuation beneath the silts deposited in that lake, and that they are older than the mountain uplift is proved by the facts that their original continuity is broken by a momntain-forming fault, and that they were hoisted and tilted from their original position along with the mountain block.

The steel-tower transmission line that crosses the hill brings electricity from a power plant in the upper Bear River canyon 20 miles above Preston, Idaho. On leaving the canyon the train swings
around a bend and enters the broad Cache Valley, \({ }^{1}\) of which the Bear River range, another part of the Wasatch Range, makes the east wall. To the northeast is Newton Hill, which was an island in the great arm of Lake Bomeville that occupied this valley. Wave-cut thore lines are conspichous on its sides (see Pl. XXX, A), showing conclusively that Cache Valley was once occupied by a great body of water several hundred feet deep. It will be easily realized that when Lake Bomerille was at its greatest height the strait between the body of water in Cache Valley and the larger body on the west was about 5 miles wide and was shallow and interrupted by several intands. The cliffs of the narrow canyon reach nearly to the level of the second conspicuous terrace (the Provo), and north of the eliffs, where the highway now crosses the pass, there is a considerable break in the upper (Bonneville) terrace, as there is also south of the canyon. From this it appears that as the lake surface lowered the outlet of Cache Bay dwindled to three chamels. One of these whose position may have been determined by a fault or line of fracture across the pass persisted and now carries all the drainage. While the canyon was being cut, the surface of the main lake must have been lower than that of Cache Bay. The smaller body of water, besides evaporating less rapidly, was receiving the largest inflow. When the shore of the main lake had receded a considerable distance, perhaps several miles from the mouth of the canyon, Cache Valley no longer contained a bay connected with the main lake by a narrow strait, but instead a separate lake which drained into Lake Bonneville by a short river. Eventually the lake in Cache Valley was drained out, and the river flowing across the abandoned lake bottom west of the canyon has gradually deepened its channel.

Fron Cache Junction the Cache Valley branch of the railroad runs to Wellsville, Logan, and Preston. The bottom of Cache Valley

Cache Junction.
Elevation 1,114 feet. Ogilen 49 miles. has an altitude of about 4,500 feet and presents one of the most beautiful pastoral spectacles in the State. The valley proper is about 35 miles long and in many places 10 miles wide. The settlement of this valley was begm by the Mormons in 1856, when the town of Wellsville was

\footnotetext{
\({ }^{1}\) ('ache Valley was formed by faults which broke the earth's 'rust into blocks and raised some with relation to others. The Wasatch Range las already been dhes ribeel (pp. 99-100) as made of upturned slats of rock formations shoved up (nw on another. The Bear River liang had sumewhat the same origin. The west fare at hogan is believed to bea fault searp like that at Ogden. Whether the blowk multer Carhe latley remained
at a fixed altitude while the surrounding blocks were raised, or whether it sank with relation to them is not known. The surface of the valley block probably was not smooth, but when Lake Bonneville occupied this basin, the sediment brought in by rivers, and the wash from the mountain sides, were deposited on the lake bottom and smoothed over the inequalities, making the present nearly level surface.
}

A. "THE GATES" OF BEAR RIVER, FROM THE EAST NEAR CACHE JUNCTION. UTAH.

Horizontal lines indicate wave-cut shore lines of ancient Lake Bonneville.

5. EAST BUTTE, IDAHO.

laid out by a colony of six families. White persons had, however, been here before. J. C. Frémont, in the report of his explorations in 1S42, mentions meeting parties of emigrants in this locality, and Marcus Whitman traversed the valley in the fall of 1842 on his memorable journey from Oregon to Washington, D. C., with the object of saving Oregon Territory for the United States.

Logan, the principal town in Cache Valley, hats a population of about 8,000 and is the location of the State Agricultural College, Brigham Young College, and one of the four great Mormon temples. The two towers of this temple, rising above the trectops at the foot of the mountains to the east, can be seen from the ralroad. Two large sugar factories in this valley, at Logan and at Lewiston, contract for the yield of several thousand acres of sugar beets, the growing of which is one of the principal industries. Dairying is also an extensive industry and condensed-milk factories are located at Logam, Smithfield, Richmond, and Franklin.

On leaving Cache Junction the train crosses Bear River and turns to the north, giving a broad view of the south end of Cache Valley and its encircling mountains. Logan Peak, the highest point on the range near Logan, has an altitude of 9,713 feet. The strip of timber along the foot of the mountains from Logan north is not natural forest but is composed wholly of orchards, shade trees, and windbreaks around the farms.

Wave-cut terraces or beaches of old Lake Bonneville are well preserved on the side of Newton 1Iill, west of Hammond siding. The

\section*{Hammond.}

Elevation 4,445 feet. Ogden 53 miles. rock cliff here probably is the result of comparatively recent uplift along a north-south fault. Between Hammond and Trenton, at the point where the railroad turns from northeast to north, the white spots that look like closely set gravestones on the hillside west of the track are about 200 beehives. The bees feed on alfalfa and white clover, and the honey industry is growing. Many years ago the Mormons attempted to establish a silk industry in the valley but were not successful. Some of the mulberry thees they set out are still standing.

The principal industry of Trenton is indicated by the grain elevators and large flour mills. Most of the ridge on the west is formed of soft sandy and limy rocks of Tertiary age. Some houses

\section*{Trenton.}

Elevation 4,460 feet. Population 24s.* Ogden 57 miles. in the vicinity are built of these rocks, which are easily quarried and shaped. North of Trenton welldeveloped lake terraces may be seen on the ridge to the west, and in the late afternoon sunlight they are made particularly conspicuous by the shadows. To the east stretches a broad, level plain, the built-up floor of Cache Bay of the ancient Lake Bonneville.

Most of the villages in the valley are at the foot of the mountains on either side. The settlement of an arid country depends on the water supply, and as the best and most usable water was found at the mouths of mountain canyons, there the pioneers built their homes. The center of the broad valley is thinly settled, largely because Bear River and its tributaries have cut their channels so deep below the general level that it is hard to get water from them up on the land.

Ransom is only a railroad siding. Several miles to the northeast, in the broad valley of Bear River, \({ }^{1}\) is the town of Preston, which has a population of about 3,000 and is the terminus of the Ransom. Cache Valley branch of the Oregon Short Line.

Elevation 4,4s1 feet. Ogden 61 miles. Hidden in the trees to the right of an isolated hill on the east side of Bear River is the village of Franklin. This hill, which is 6 miles east of the railroad, is a knob of limestone known as Mount Smart ("Franklin Butte" in Gilbert's report on Lake Bonneville; see p. 230) and was an island in Lake Bonneville. The story of that lake is carved in unmistakable signs on what was the windward side of this island. Cliffs cut by the waves that once beat against it and beaches covered with gravel are beautifully preserved on the southwest side, toward what was a broad expanse of open lake, while the east or shoreward side is comparatively smooth. Lime for the beet-sugar factories in this valley has been quarried in this hill.

At Cornish the train leaves Utah and enters the State of Idaho. The station stands on the State line. The irrigation

Cornish, Utah.
Elevation 4,522 feet. Population 143.* Ogden 62 miles. canal seen at Cornish is 19 miles long, heads on Bear River above Battle Creek, 12 miles to the north, and supplies water for 20,000 acres of otherwise desert land. The irrigation systems in this valley were built and are owned by private companies.

To those who remember Idaho in their school geographies as a small pink block, shaped like an easy chair facing east, it may be of interest that this State, which in 1890 added the fortyIdaho. fifth star to the constellation on the flag, is nearly as large as Pennsylvania and Ohio combined and larger than the six New England States with Maryland included for good measure. It is divided into 33 counties, the smallest of which is half as large as the State of Rhode Island and the largest greater than the combined area of Massachusetts and Delaware.

\footnotetext{
\({ }^{1}\) The mean discharge of Bear River as determined by measurements of its flow made at Preston, Idaho, during a period of 24 years, is 1,290 second-feet-that is, 1,290 cubic feet of water passing a given point each second. A maximum flow of 7,980 second-feet was recorded in 1894, and a
minimum of 164 second-feet in 1905. There are two hydroelectric plants on Bear River above Preston, one under construction in Oneida Narrows, to have an installed capacity of 27,000 horsepower, and one at Grace, Idaho, with 17,000 horsepower.
}

Scaip \(50 \frac{1}{50.000}\)
Approximately \(\&\) iniles to 1 inch

Idaho covers an area of 83,858 square miles, divided principatly between the Rocky Mountain region and the Columbia Plateau, only a small part, in the southeast corner of the State, lying in the Great Basin. In elevation above sea level the State ranges from 735 feet, at Lewiston, to 12,078 feet at the summit of Ityudman Peak. It is drained mainly to the Columbia through Suake River and its tributaries, and has an annual rainfall of about 17 inches, the range in a single year at different places being from 6 to 38 inches.

The industries of the State are chicfly agriculture, stock raising, and mining. Hay, wheat, oats, and potatoes are the principal crops. A large area is cultivated by irrigation. The mineral production includes gold, silver, copper, lead, and zinc. The output of lead in 1913 was valued at \(\$ 13,986,366\), that of silver at \(\$ 6,033,473\).

The population of Idaho in 1910 was 325,924 .
A short distance from Weston the steel-tower electric line, which conveys power from the upper canyon of Bear River and which was last seen by the traveler at Bear River canyon, again

\section*{Weston, Idaho.}

Elevation 4,604 feet. Population 398. Ogden 65 miles. crosses the railroad. Weston is an old Mormon village on the lake terrace west of the station. North of it the railroad ascends a slight grade, and the gullies cut in the lake deposit give the surface an uneven appearance, but on the upper level it is very apparent that the plain is only slightly dissected. In the distance to the northeast is a high-cut bank of Bear River, but the river is not in view because in this part of its course it has sunk its channcl in the easily eroded lake deposits to a depth of 250 feet below the plain.

The main highway from Utah to Montana follows the foot of the mountains on the west side of Cache Valley to its very head. Along this road are several old Mormon settlements, among

\section*{Dayton.}

Elevation 4,745 feet. Population 418.* Ogden 71 miles. which is Dayton (see sheet 15B, p. 124), located at the mouth of Dayton Canyon and the junction of a very rough road leading over the mountains to Malade. The big cliff at the mouth of Dayton Canyon is composed of very ancient sedimentary rocks (Cambrian?) dipping westward at a low angle. About half a mile up the canyon these rocks have been overridden by much younger (Carboniferous?) limestone, showing that the mountains west of this end of Cache Valley were formed by the piling up of upturned broken slabs of the carth's crust. The foothills back of Dayton are made of sandy and limy rocks which were originally deposited as sand and mud in a fresh-water Tertiary lake. Such rocks are found in many places around the edge of Cache Valley.

The train now approaches on the cast a north-south ridge several hundred feet high, known as Battle Creek Butte. It is isolated in the
midst of the valley and takes its name from Battle Creek, the scene of an Indian fight near its eastern base. Much of the ridge is made up of very old shales (hardened mud rocks), but the south end and some of the top are composed of diorite, a kind of granite which, in a molten condition, was forced up into these shales from below. This molten rock may not have reached the surface, for the surface at the time of the intrusion was considerably above the present one. Whether this ridge is an uplifted fault block or a remnant left by the forces of erosion has not been determined, but it certainly was an island when Lake Bonneville stood at its highest level. The north end of the ridge consists of soft Tertiary sandstone.

Opposite the middle of Battle Creek Butte is Garner, a station for the village of Clifton, which lies at the edge of the flat 1 mile west. Clifton is an old Mormon hamlet of about 100 people.

Garner.
Elevation 4,751 feet. Oglen 75 miles.

Late in the afternoon the mountains on the west appear a hazy blue, details are obscured, and it may not be possible to distinguish the low rounded foothills made by Tertiary conglomerate and sandstone or to see the prominent lake-cut benches which continue along the edge of the valley as fir north as Oxford.

A large reservoir among the Tertiary ridges just cast of Garner is filled from a ditch that brings water from Mink Creck, several miles to the northeast. An inverted siphon carries water from this reserwiir across the creek at Garner, and a wooden pipe line that goes under the railroad at the first road north of Garner station takes the water to Clifton, where it is turned into irrigation ditches. About 31,000 acres is irrigated from this one system.

A short distance north of Garner a clear view is again obtained of the Bear River Range, several miles to the cast (right), and of the low Tertiary hills in front of it. The railroad passes

Oxford.
Elevation 4,745 feet. P'opulation 591.* Ogden b1 miles. a big marsh, one of the few areas in this part of the valley which is not yet much utilized, and continuing along the practically level lake floor comes to the station for a Mormon village, Oxford, which stands among the trees 2 miles to the west. The Provo shore line may be seen near the village. If Cache Valley should be filled again to the highest level of Lake Bonneville, Oxford village would be 400 feet under water, and the temple at Logan would stimd in water 500 feet deep.

A low ridge just north of Oxford station extends eastward from the monutains and makes the valley bottom much narrower. Directly ahead, about 7 miles distant, there are two prominent

Swan Lake.
Elevation 4,722 fred. Oglen 41 miles. rocky points, which mark Red Rock Pass, the old outlet of Lake Bonneville. West of the track is Swan Lake, a small body of water on which it is common th see many ducks either resting quietly or, frightened by the train,
skittering away through the weeds. The railroad grade, which has been gradually rising to Swan Lake station, now begins to deseend. By the overflow of Lake Bonneville the drainage divide was moved from Red Rock Pass, where it stood before Bomeville time, back to this point, nearly 7 miles farther south. Sand and gravel dumped by small ereeks coming out from the hills have dammed this part of the valley, making a marsh which extends most of the way from Swan Lake to the pass. The hills on the east are composed of Tertiary sediments, mostly shale, and show the Bomerille shore line about 340 fect above the marsh. At Red Rock Pass red limestone cliffs appear on both sides (Pl. XXXI, p. 113). From the road crossing just south of the pass may be seen on the right a small valley coming down from the northeast. This is the head of Marsh Creek, which in pre-Bonneville time probably drained southward into Bear River, but which, by the shift of the divide just mentioned, now turns at a sharp angle and goes through the pass to join the Snake River drainage system. Through this valley went the magnificent river made by the overflow of Lake Bomneville.

As most of the water of Marsh Creek is used in irrigation, the natural channel through the pass and for a short distanee north of it may be

\section*{Zenda.}

Elevation 4,443 feet. Ogden 90 miles. dry in summer. The knobs of limestone, 200 to 300 feet high, which overlook the chamel from opposite sides leave a maximum width of 600 feet for the river that drained Lake Bonnerille just before it wats drawn down to the Provo stage. (See Pl. XXXI.) When Lake Bonneville first started to overflow, the lake level stood higher than the tops of these limestone rocks, which had been buried beneath mountain waste. Gravel deposited by the stream that drained the lake at its highest stage is found on top of the red butte along the base of which the train passes. The Hunt ranch, mentioned by Gilbert in his deseription of this old outlet of Lake Bomeville published in 1890, was at the foot of this rocky citadel. The limestone crags bordering Red Rock Pass are conspicuous features of the landseape and were well known to the carly travelers in this region and to the freighters who hauled supplies for the western Montana mining camps over the road that follows the course now taken by the railroad. The traveler going north from the pass may notice that although the steep-sided valley is a quarter of a mile or more wide, its stream is only a rivulet meandering through the meadow. (See Pl. XXXI.) The ill-matehed stream and valley afford evidence that a great river once flowed where now there is only a brook. (See pp. 97-98.) Here, then, at or just north of the red cliffs, Lake Bonneville overflowed its rim and began the discharge which continued until evaporation exceeded inflow.

The valley bottom beeomes wider toward the north, and the train leares it and comes out upon a broad bench, from which an extensive view may be had of the valley of Marsh Creek. \({ }^{1}\) On

Downey.
Elevation 4.858 feet. Ogden 95 miles. this bench is Downey, a small settlement in the midst of an extensive agricultural district. The first homes were built here about 1894, but it was not until 1910, when water was brought by a large irrigation canal from Portneuf River below Lava Hot Springs and it became possible to irrigate the land, that the settlement had any marked growth. It was named for one of the engineers or officers of the Oregon Short Line. The grain elevator and the broad fields of grain that streteh away in all directions tell of the principal industry of the people. About 12,000 acres is irrigated by the Downey Improvement Co.'s ditch and cultivated. When the ditch was completed in 1910 land sold for \(\$ 35.50\) an acre, \(\$ 35\) for the water right and 50 cents for the land. In 1914 it was worth about \(\$ 45\) an acre with water right but without improvements.

Oxford Peak (elevation 9,386 feet), which overlooks Red Rock Pass, appears from Downey as a mountain mass with two tops of about equal height. The front of the mountain range east of Downey is made up of Carboniferous limestone dipping to the east; the mountains on the west are composed of Ordovician rocks, also dipping east. In all directions there is a strong suggestion that the comparatively level valley floor between the two mountain ranges was

\begin{abstract}
\({ }^{1}\) Marsh Valley, like Cache Valley, is inclosed between mountain ranges, and has a north and south trend. Its length is about 35 miles, and its greatest width is 8 or 10 miles. Twenty miles from Red Rock Pass the Portneuf River breaks through the eastern mountain chain and enters the valley, turning northward and running parallel with Marsh Creek to the end of the valley. There it receives the creek and then turns abruptly westward and escapes from the valley through a deep but open canyon. The upper canyon of the Portneuf has at some time admitted lava as well as water. A succession of basaltic coulees have poured through it into Marsh Valley and have followed the slope of the valley to the lower canyon. The Portnenf River follows the eastern margin of the lava beds, and Marsh Creek the western, each occujying a narrow valley sunk from 30 to
\end{abstract}

100 feet below the level of the lava table. A comparison of these valleys illustrates the disparity between Marsh Creek and its channel. Portneuf River is several times larger than Marsh Creek, but the immediate valley by which it is contained is smaller. Indeed, there is every evidence that the valley of Marsh Creek, having been formed by the ancient Bonneville River, is now in process of filling. It abounds in meadows and marshes and at one point contains a lakelet.

It appears, however, that the Bonneville River was not contained during its entire existence in the channel now occupied by Marsh Creek. The whole upper surface of the lava tongue, where it has a width of more than a mile, is fluted and polished and pitted with potholes after the manner of a river bed, and there seems no escape from the conclusion that it was swept by a broad and rapid current.
produced by outwash from the mountains. In other words, the débris brought down from the surrounding mountains by the numerous streams has spread out as a great apron, filling the valley to a considerable depth, and every year, especially at times when the streams are high, a little more sand and gravel are added to the deposit. The valley of old Bonneville River, now oecupied by Marsh Creek, is cut in this fill. At Downey the flat floor is composed, at least near the surface, of well-rounded sand and prartly cemented gravel. It is said that a well 600 feet deep west of Downey was drilled entircly in hill wash.

Virginia is the station for a considerable number of farmers living on irrigated lands in the vicinity. The fine large school buildings

\section*{Virginia.}

Elevation 4,790 feet. Ogden 100 miles.

\section*{Arimo.}

Elevation 4,736 feet. Ogden 105 miles. here and at Arimo, a few miles farther north, are typical of the school facilities provided for country pupils in this part of Idaho. After leaving Virginia the train runs down below the level of the upper bench and at Marsh Valley siding passes gravel pits from which a great quantity of material has been taken for fills and ballast along the railroad. The gravel shows the character of the valley filling. Arimo is one of the numerous little settlements on the main highway between Ogden and Pocatello, which parallels the track for many miles.

The valley of Marsh Creek has been flooded with lava in one of the later stages of geologic history, probably in Pleistocene glacial time. Lava of this kind, a basalt, is widespread in southern Idaho. It is seen first in Marsh Creek valley about \(1 \frac{1}{2}\) miles north of Arimo, between mileposts 106 and 107. The edge of the lava first appears as a low vertical wall of black rock on the east side of the creek, just north of some ranch buildings. Marsh Creek flows along the west side of the lava and the railroad runs along the east edge for a short distance, gradually going up on the upper surface, which it traverses to McCammon. The surface appears smooth, but so much of it is bare rock partly hidden by sagebush that the land is not cultivated. Near McCammon, where there is more soil on the lava, crops are being raised. Just before reaching McCammon the traveler can see on the east the defile which Portneuf River has cut through the mountains. In the forties and fifties pioneers from the Mississippi Valley bound for Oregon diverged from the Astor route and entered the Snake River valley through this defile by ox team, where travelers now pass along in Pullmans and Packards.

At McCammon, the junction of the Granger and Ogden branches of the Oregon Short Line, the mountains on both sides of the valley are composed of Ordovician shale, limestone, and quartzite, dipping to the east. \(\Lambda\) cross section of the valley at this point (fig. 14) shows a fold in the hard rocks which explains how a single formation may occur in the same position in two parallel mountain ranges. It also shows the relation of the mountain wash to the bedrock and contains in diagram the record of an interesting series of events. After the mountains were uplifted and had been somewhat worn down by erosion, there seems to have been a long period when the earth's crust in this region remained practically stationary and the refuse from the wearing down of the mountains on both sides gradually filled the valley to a considerable depth. Subsequently,

Figure 14.-Cross section of Marsh Creek valfy at McCammon, Idaho.
an clevation of this region gave the streams greater fall, which increased their cutting power, so that they gradually washed out deep gullies in the fill. Then came a period of voleanic activity during which great quantities of lava welled up through cracks in the earth's crust and flowed out from volcanoes. The bottom of the valley occupied by Marsh Creek and Portneuf River, from a point near Arimo to Pocatello, was filled with black lava, most of which probably came up from a crack along the valley bottom. After the lava cooled Portneuf River, coming out from its canyon on the east, may have flowed for a time directly across the top of the lava to the west side of the valley, as suggested by an abandoned channel to be seen along the railroad just before entering McCammon, and there joined Marsh Creek. Subsequently it cut a new course along the east edge of the lava tongue to its present position and left Marsh Creek in possession of the opposite ledge. Long after the lava had cooled Lake Bonneville formed and its outlet stream through Red Rock Pass poured down Marsh Creek valley, flowed over the top of the lava, leaving deposits of sand and gravel in its wake, and carved deep chamels on both sides of the narrow lava tongue.

A place of more than local interest is Lava Hot Springs, in Portneuf Canyon 12 miles east of McCammon, where in 1914 the State of Idaho built a matatorium inclosing a concrete swimming pool 33 by 66 feet for public use. \(\Lambda\) number of hot springs issuc from the bank of the river, and near them is a popular camping place. In the canyon at and above the hot springs there is considerable calcareous tufa, a soft cellular limestone deposited by the eraporation of water carrying lime in solution.

The gently sloping benches or ierraces from McCammon to the foot of the mountains on the east and west are composed of outwash material which, though deposited by mountain torrents, has nevertheless accumulated so gradually that it makes a good soil. Large quantities of grain are raised on it by dry farming. The great white ledge seen on the momntain side 5 miles east of the village is a band of gray sandy limestone about 100 feet thick. The Harkness ranch, just north of the village, was one of the first in this region and was a common stopping point for freighters before the railroad was built. Mr. Harkness maintained a toll bridge over Portneuf River at this point. \({ }^{1}\) Water power at McCammon runs the local gristmill and electric-light plant.

Immediately on leaving McCammon the train runs down off the top of the lava into a little canyon, and for a number of miles follows the river and the edge of the lava. Toward the north the lava wall increases from 10 to 50 feet in height. In most places its upper edge is well exposed, but the lower part is concealed by large and small blocks broken from the ledge above by frost action and other natural forces. Fine exposures of black columnar basalt, \({ }^{2}\) are almost con-

\footnotetext{
\({ }^{1}\) Measurements of the flow of Portneuf River show a mean discharge of 265 second-feet at Topaz, a station in the canyon east of McCammon, during 1913-14 and of 334 second-feet at Pocatello during 1897-1899 and 1912-1914. The recordsat Pocatello show from a minimum flow of 14 to a maximum flow of 1,880 secondfeet. No large power plants are feasible on this stream.
\({ }^{2}\) Columnar structure, or the division of a rock into prisms more or less straight and parallel to one another, is a common feature of basalts. Well-known examples of this structure are the Giants Causeway and Fingals Cave, in Ireland; the lavas in the Auvergne, in central France; the Palisades of the Indson; the Watehung Mountains, west of Orange, N. J.; and the lavas in the Snake River canyon of Idaho
and the valley of the Columbia in Oregon. Asin the drying of a mud purdle cracks break the surface into figures having five or six sides, so in the cooling of molten basalt the prismatic shrinkage cracks start at right angles to the cooling surface. If the rock were perfectly homogencous and the cooling uniform, the columns would all be hexagonal and of unform thickness. The slower the mass cools and shrinks the larger will be the columns, and as the upper and lower surfaces of a mass of lava are likely to cool at different rates, it is common to find the lower portion separated into larger columns than the upper portion. As the columns are developed at a right angle to the cooling surface it follows that a sag or depression in the surface of a basalt sheet is underdain by radiate colimmar stmeture.
}
tinuous on the west side of the track. Areas a few yards in extent showing radiate columnar structure may be seen at several points close to the railroad between McCammon and Pocatello.

Onyx is a siding just below a concrete bridge over Portneuf River. Near milepost \(200^{1}\) the river tumbles over falls made by travertine, a soft cellular limestone deposited from calcareous

Onyx.
Elevation 4,615 feet, Ogden 117 miles. Granger 197 miles. spring waters. The small knobs of limestone in the valley bottom between the 198 and 200 mile posts were once buried in the lava which spread over the whole valley floor but have been brought to light again through the wearing away of the lava by the river.

Near the 201-mile post the railroad and river turn to the middle of the larger ralley, where there are basalt walls on both sides. An abandoned channel of Portneuf River continues along the east edge of the lava mass, so that the lava east of Inkom is an isolated block lying between the abandoned channel and the new channel of Portneuf River.

At Iukom, a small settlement just below the point where Marsh Creek enters Portneuf River, the river turns from north to west and

Inkom.
Elevation 4,520 feet. Population 549. Ogden 122 miles. Granger 202 miles. cuts through the range in a deep, narrow valley. The basalt formerly occupying the present position of Inkom has been gradually removed by the stream which comes in from the northeast. Portneuf River has worn the basaltic lava away from the south side of the valley from Inkom to Pocatello, leaving a black columnar wall on the north side of the track. In some places it is very apparent that there are two thin sheets of lava, one resting upon the other, indicating two distinct volcanic outbursts. About 4 miles west of Inkom the lava stops short, and there is none in the narrow pass through the mountains.

The valley of Portneuf River from McCammon to Pocatello is cut in ancient Paleozoic rocks, including limestones, shales, and quartzites, tilted at various angles but for the most part to the east. The Bannock Range west of Inkom, through which the train passes so quickly, is composed of Ordovician strata which are more or less folded, an anticline or upward bend being indistinctly recognizable on the south wall of the pass. There is no picturesque canyon hereonly a short, sharp gap. A great fault or break in the rocks along the west side of the range crosses the river at the west end of this gap, but no trace of it can be seen from the train.

\footnotetext{
\({ }^{1}\) In the Portneuf Valley between McCammon and Pocatello the railroad mileposts indicate the distance west of Granger, Wyo.
}

As soon as the train leaves the gap a basalt wall is seen again on the north. Probably the lava was originally continuous through the

\section*{Portneuf (spur).}

Ogden 128 miles. Granger 208 miles. gap, having flowed down the valley from McCammon as a great molten tongue, but if so it has been completely removed from the gap by the river. Plainly there are two lava sheets here. The columnar structure is well developed, as shown in the vertical wall at the edge of the basalt. At a few places where there were original sags in the surface of the mass radiate structure can be recognized. The basalt ends in the Portneuf Valley with a gentle slope about 3 miles east of Pocatello. Near Pocatello the mountains swing away to the west and north, making room for the city.

A low, steep-faced reddish ridge north of the track just east of the city appears to be a block of Ordovician quartzite uplifted by faulting.

Pocatello, \({ }^{1}\) another "gateway to the mountains," is the junction of the divisions of the Oregon Short Line running north to Butte, Mont., and west to Huntington, Oreg. It was named for an Indian chief and began as a tent city in 1882, when the railroad was completed to this point. The early history of this locality is a wild one. In the days when the overland stage made its way through

\section*{Pocatello.}

Elevation 4,460 feet. Population 9,110. Ogden 134 miles. Granger 214 miles. Portneuf Valley trouble with Indians and with highwaymen was common. The city is built on a town site of 2,000 acres sold by the Indians to the United States. It is divided by the railroad into two distinct parts, connected by a viaduct which crosses the numerous tracks at the station. It is growing rapidly and already has many noteworthy institutions, such as a Federal building, a Carnegie library, a hospital, a large railroad Y. M. C. A., and fine schools, including the Academy of Idaho, which bridges the gap between the common schools and the State university. The electric light and power used in the city is generated at American Falls, 25 miles west, on Snake River. The growth of the city is due largely to the railroad shops, which give employment to hundreds of men.

Just west of the eity highly tilted Cambrian quartzite is overlain by rhyolite, a light-colored siliceous volcanic rock, which flooded the surface before the basalt came. As the train leaves the station and passes the roundhouses and extensive railroad shops the traveler sees to the west the great Snake River plain. Far out in this plain a solitary mountain appears in dim outline. This is Big Butte, the cone of an extinct volcano, and the westernmost of three buttes which for generations have been landmarks in this part of the country.

Farther than the eye can see the Snake River plain stretches away to the west. The valley of the ancient Snake River was flooded

\footnotetext{
\({ }^{1}\) The railroad mileposts from Pocatello to Idaho Falls give the distance from Ogden.
}
with great outpourings of black lava, which spread out sheet on sheet, buried the old land surface, and partly filled the valley with molten rock, which solidified and has remained to this day undisturbed except for the gorges that the streams have cut in it. In some places old mountains project through the petrified lava flood as islands project above the surface of the sea, and old ridges stick out into it as capes and promontories.

The description of the Snake River plain below given \({ }^{1}\) is taken from a report written in 1901 by I. C. Russell.

\footnotetext{
\({ }^{1}\) Southern Idaho is a region composed of geologically old rocks, which formed an aucient land surface having a rugged relief. In the depressions of this surface, during later geologie time, extensive lake and stream deposits and vast lava flows were spread out. The older rocks, sharply separated from the younger by a long time interval, during which extensive movements in the earth's crust and deep erosion took place, are mainly granite, rhyolite, quartzite, and limestone. The younger of these is probably the limestone which is thought to be of Carboniferousage. These rocks were variously folded, faulted, and upheaved into prominent mountains, and deeply dissected by a large river, with many tributaries, which was long lived. The valley of the main stream, the ancient representative of Snake River, became broad and had many important tributary valleys opening from it and extending far into the bordering mountains. The sharp-crested mountain spurs between the lateral valleys are in some instances prolonged far into the main depression.

After the topography had passed matu-rity-that is, after the streams had exeavated deep valleys, leaving sharp-crested or serrated divides between them-the main stream was obstructed, possibly by lava flows, but more probably by an upward movement of the rocks athwart its course, in the region now included in western Idaho and eastern Oregon, and a lake was formed which occupied a large part of the country now included in the Snake River plains. This water body, named by Lindgren Lake Payette, rereived the sediment brought in by tributary streams and the dust blown out by
}
volcanoes and became deeply filled. These sediments, which have a known depth of over 1,000 feet, are now well exposed, particularly in southwestern Idaho. In places they contain impressions of leaves of trees which grew on the borders of the old lake, the shells of fresh-water mollusks, the bones of land mammals, and other remains. The fossils record a Tertiary (Miocene) age.

Before Lake Payette came to an end the vast lava flows which now form such a conspicuous feature of the Snake River basin began to be outpoured. In fact, the lava and the sediments of Lake Payette and of a later lake in the same basin were contemporaneous, the lava and lake sediments being interbedded. Some of the lava flows entered the lake, and the oceurrence of thick beds of volcanic fragments (lapilli) and of scoriaceous, glassy lava, with a torn and slaglike structure, at the base of thick sheets of usually compact basalt records the energy of the steam explosions that followed. Highly liquid lava continued to be poured out at various intervals from a large number of voleanic vents and spread out in the previously formed basiu, making, in truth, lakes of molten rocks. Besides these two processes of upbuilding-that is, sedimentation in lakes and the outpouring of lava which spread widelythere was a third, the washing of débris from the uplands and its deposition in alluvial cover and widely extended sheets of sand, gravel, and silt in the valleys. In addition, there are widespread eolian [wind] deposits. The volcanic eruption continued after the lakes were either filled or drained, so that by far the larger portion of the Snake River plains is

\section*{THALL IND RES.}

Scale \(\frac{1}{500.000}\)
Approximatell 8 miles to 1 nch
5

Contour interval 200 ieet
0

At Tyhee (see sheet \(1.5 \mathrm{c}, \mathrm{p} .13 \mathrm{~s}\)), \(1 \frac{1}{2}\) mites south of the Fort latl Indian Reservation, the railroad turns more to the north and a view is obtained on the left of the middle and east buttes

\section*{Tyhee.}

Elevation 4,45s feet. Ogden 140 miles. of the thee already mentioned. The sagebrush flat now being arossed is owned by the Indians. Very little land has been cultivated in this part of the reservation, although much of the land is under ditches of the irrigation system installed by the Govermment. Near Tyhe may be seen the large upper canal which takes water from Blackfoot River about is
directly underlain by sheets of basalt. The last of the extensive volcanic discharges happened in very recent times, and the process of stream deposition still continues.
The estimated area covered by the Snake River lava is in the neighborhood of 20,000 square miles. So far as is now definitely known, there is but one lava field in North America of greater extent, namely, the Columbia River liva, the estimated area of which is about 200,000 square miles. In Suake River canyon, below Shoshone Falls, nearly 700 feet of lava in horizontal sheets are exposed, but whether this is the maximum thickness or not can not be told. As a rule, the various sheets of lava are relatively thin, averaging perhaps 50 to 80 feet and widely extended. That many independent outlows of lava have occurred is easily seen, but in the walls of Snake River canyon, where the best sections are exposed, it is difficult to determine the number unless lacustral deposits, beds of lapilli, etc., occur between them.
Although the soil of the Suake River plains has well-marked variations, it may be said that in general, and, in fact, almost everywhere, it is fertile and needs but the requisite moisture to enable it to produce a strong growth of either native or cultivated plants. In general, however, the soil of the plains is a fine yellowishwhite siltlike material, largely a dust deposit, which mantles the surface not only on level tracts, but covers hills and broad depressions alike. This material is similar to the celebrated loess of China, except that it usually occurs as a comparatively thin layer, and resembles also the deposit bearing the same name in the Mississippi

Valley. Like earh of these formations, it is of exceptional fortility if properly irrigated.

The ever-present and characteristic plant of the Snake River plains is the sagebrush (Artemisin tridentata), which grows abumlantly and, we might say, luxuriantly in the dry soil from the bottom of the Snake River canyon up to an elevation of some 2,000 or 3,000 or more feet on the mountains borlering the plains. It cover's the broad arid valleys almost completely and is seldom lacking over any extensive area except where fires have recently occurred or cultivated fields supplant it. On the plains in summer fire sometimes sweeps through the sagebrush in much the same manner that it does over the prairies and "Jurns" are produced. The "sage" in the localities most favorable to its growth attains a height of about 10 feet, but usually is not over 3 feet ligh, the clump of bushes being commonly 6 to 8 feet apart. One can ride or walk over the sagebrush plains with but little difficulty. The light grayish-green leaves of this ubiquitous plant give color, or perhaps more properly, lack of color, to the plains and enhance their monotony. Although the Snake River plains are frequently termed a desert, the name is true only in the sense that they are practically without water. Comparatively little of the surface is destitute of plant life. In fact, the flora is found to be abundant and varied if one examines it closely. There are many lovely plants that blossom early in the spring, filling the air with fragrance, and in the summer and fall the yellow of sumflowers and of the still more plentiful "rabbit brush" (Bigelovia graveolens),
miles to the north. The canal is carried under the track near Tyhee by means of an inverted siphon.

East and northeast of Tyhee the old flood plain of Snake River terminates against a bluff about 40 feet high, from the top of which the land rises gently in long slopes to the hills made of upturned Paleozoic rocks, more or less covered with lava. The gently sloping bench lands are themselves composed of marls, sandstone, conglomerate, rolcanic ash, and lavas. These deposits are geologically very young, probably Pliocene. They cloak the older formations over many square miles.

Three gray stone buildings with red roofs east of the track belong to a boarding school for Indian boys and girls, where the 180 pupils are given instruction in practical matters relating to farm life as well as the ordinary academic courses.

Fort Hall is the headquarters of the superintendent of the Fort Hall Indian Reservation and the enginecrs on the reclamation project. The Indian women secn here are dressed in blankets

\section*{Fort Hall.}

Elevation 4,458 feet. Population 1,672.* Ogden 146 miles. and moccasins, and the men in semicivilized costume. Some of the Indian maidens, however, wear gowns of the latest styles. Fort Hall, formerly called Ross Fork, from the stream on which it is built, takes its present name from a fort which was built in July, 1834, about 15 miles to the northeast, at the junction of the Missouri-Oregon and Utah-Canada trails, by Capt. N. J. Wyeth and named for one of his partners. It was to the original fort that Dr. and Mrs. Marcus Whitman and Rev. and Mrs. H. H. Spaulding came in 1836 on their way from Boston to missionary labors among the Indians in Oregon. Theirs were the first wagons and Mrs. Whitman and Mrs. Spaulding
a relative of the goldenrod, here and there give broad dashes of brilliant color. Beneath the sagebrush in a state of nature nutritious bunch grass grows abundantly and still furnishes pasturage where sheep have not ravished the land. Where the plains are broadest-that is, north of the Oregon Short Line Railroad and especially in the vicinity of the three steptoes, Big, Middle, and East buttesmuch of the land is withont sagebrush and in the condition of a rolling prairie, which supplies excellent winter pasturage.

On the plains, more especially in the broader portions in the vicinity of the three prominent buttes that break their monotony, big game is still to be found. Antelnpe roan over them throughout the year, while deer and elk find there a safe
winter range. The mountain sheep is also present in winter, and the mountain goat is reported to have been met with. The great horn cores of the mountain sheep are occasionally to be seen bleaching among the clumps of sagebushes. Occasionally also the horns and bones of the bison are found, showing that southern Idaho was within the former range of that species. Besides the animals just mentioned, the plains are visited by bears, wolves, lynxes, foxes, and skunks, and the coyote is only too abundant. Ducks, geese, and other birds visit the ponds and streams, particularly along Snake River and on the west side of the plain to the Lost River country. Grouse of several species are common and smaller birds are by no means rare.
the first white women to cross the Rocky Mountains. The party forded Snake River near the site of Blackfoot and went bravely west over the waterless plain. The old fort was abandoned many years ago and practically all vestige of it is lost.

In the Fort Hall Reservation sagebrush seems to cover every acre and the traveler may question if the Indians cultivate any land. Most of the Indians, however, live near the crecks and their homes can not be seen from the train. In 1914 they had 7,240 aeres under cultivation. The principal crops are alfalfa, oats, wheat, potatoes, barley, garden truck, and sugar beets. According to the report of the Commissioner of Indian Affairs for 1214 the total Indian population of the reservation was 1,797 , including 462 children of school age. Of these Indians, 1,506 are full bloods belonging to the Bannock and Shoshoni tribes. There had been allotted to the Indians 38,280 acres of irrigated land and 330,971 acres of grazing land. The old and decrepit Indians, 250 in number, get rations. More than two-thirds of the Indians live in tepees and tents. Nearly a third of them winter on the Snake River bottoms, where there is timber for shelter, fire wood, and plenty of pasturage and where snow rarely lies more than a few days.

The road up Ross Fork from Fort Hall station leads across the mountains to the dam of the great Blackfoot reservoir, about 30 miles east, built to store water for the Fort Hall irrigation system. Phosphate deposits occur about 20 miles east of Fort Hall station along this road. The deposits in this reservation contain approximately \(738,000,000\) long tons and are estimated to underlie \(58 \frac{1}{2}\) square miles at depths of less than 5,000 feet; they doubtless underlie a much larger area at greater depths. The main phosphate bed is 6 or 7 feet thick and is rich in tricalcic phosphate, the mineral constituent in bones. The phosphate beds are relatively soft and are exposed in only a few places, although clearly recognizable fragments of phosphate rock are scattered more or less abundantly along the zone of outcrop. A description of the western phosphate field, by G. R. Mansfield, is given below. \({ }^{1}\)

\footnotetext{
\({ }^{1}\) A hard problem for the farmer is to discover the needs of his depleted or unfavorably proportioned soil. Its greatest need may be phosphoric acid, one of the three substances that are most necessary in maintaining fertility, the other two being nitrogen and potash. Phosphoric acid for use in fertilizers has been supplied for many years in part by the phosphates of Florida and Tennessee and from islands in the Pacific Ocean. These deposits can not always supply the demand, and therefore the recent discovery that
}
the Rocky Mountains contain the largest known area of phosphate rock in the world is of vital interest to future generations, if not to the present one.

Albert Richter claims to be the original discoverer of the western phosphate deposits, because he recognized rock phosphate in Cache County, Utah, in 1889 and located claims on it. These phosphate deposits are said to have been independently discovered in 1897 by R. A. Pidcock in Rich Comnty, Utah, in old diggings in black rock that he mistook for

North of Fort Hall station, 1 to 3 miles east of the track, there is a group of low rounded hills composed largely of basalt lava but covered for the most part with dark sand that was hlown out from a volcano, the basalt appearing here and there as ledges and bowlders of black rock. From Fort Hall station an excellent view may be obtained of the highest mountains in the reservation, North and South Putnam, situated 15 to 18 miles to the southeast and reaching 8,837 and 8,989 feet, respectively, above sea level.

North and west of Fort Hall station the surface of the flat is overspread with dark sand, largely of volcanic origin. It is similar to volcamie ash except that it is coarser. This sand is piled in low dunes west of Fort IIall, and some of the dunes have been utilized as burial places by the Indians. These Indian cemeterics are marked by high poles, set rather close together, which may be seen for considerable distances. A cemetery about 2 miles west of the track and 1 mile north of Fort Ifall can be seen from the train in clear weather. On close inspection the cemeteries are found to be decorated with effects of the departed Indians, including clothing, cooking utensils, and implements.
gold prospects. A large sample analyzed in 1899, however, proved to be high-grade \(\mathrm{p}^{\text {hosph }}\) hate rock. In 1908, on recommendation of the Geological Survey, Secretary of the Interior Garfield withdrew from entry \(4,500,000\) acres of public land in Idaho, Utah, and Wyoming believed to be valuable for phosphate, and this phosphate withdrawal was continued by President Taft under the act of June 25, 1910. In 1909 and succeeding years these phosphate deposits were systematically examined by the United States Geological Survey, and in 1910 phosphate rock was discovered in Montana, near Melrose, by Geologist II. S. Gale. On January 1, 1915, the total area of phosphate lands in Montana, Utah, Wyoming, and Idaho withdrawn from entry was \(2,713,155\) acres. This phosphate reserve is larger than any similar area in the United States; it is, indeed, the largest area of phosphate rock yet recognized in the world.

A characteristic of the phosphate rock of this region is its oolitic texture, the rounded grains, resembling fish eggs, runging in size from the tiniest specks to borlics half an inch or more in diameter. In its weathered condition these grains are more or less distinct and the rock has
a grayish color. When freshly mined, however, the rock is dark brown or black. In some places where the rock has been subjected to great compression during the deformation of the inclosing strata it has apparently lost the oolitic texture and shows a slight increase in density.

The phosphate deposits in the West occur in definite beds that extend over wide areas and that are related to the associated rocks in the same way as coal beds. The associated beds are predominantly shaly, but include also sundstones and limestones, the whole ranging in thickness from a few feet to 175 feet. Above these phosphate shales there is commonly massive chert or cherty limestone, and below them in the Utah, Wyoming, and Idaho fields a light-colored siliceous limestone. These three sets of beds in Utah and western Wyoming are grouped together as the Park City formation, of Carboniferous age. In Idaho the phosphate shales and overlying chert are called the Phosphoria formation. The number of phosphate beds distributed through the phosphate shales varies from place to place. There is, however, usually near the base, a bed 5 or 6 feet thick in the Idaho field and the adjacent portions of Wyoming and Utah.

Volcanic hills, composed largely of a rhyolite lava, appear to the east at a distance of 4 or 5 miles from Gibsom siding. On one of the

\section*{Gibson.}

Elevation 4,46:3 foet. Ogden 151 miles. nearer hills of this group there is a very symmetrical little cone build of material similar to that which makes so large a proportion of the dark volcanic sand found abundantly in this vicinity. It seems prohatble that this little cone is the crater from which the sathd was blown out and that its eruption marks perhaps the hatest chapter in the voleanic history of the district.

For many miles north from Fort IIall the three buttes in the Snake River plain are visible in clear weather. The westernmest, or Big Butte, is an old volcano rising 2,350 feet above the plain, of 7,659 feet above sea level. East Butte, also a volcano, is 700 feet high, and Middle Butte, an upraised block of basaltic lavas, is 400 foed high. Big and East buttes are ancient rhyolitie voldanoes which existed previous to the outpouring of the fluid hasalt that flowed about them, their upper parts rising as islands in this sea of molten rock. They are about 25 and 35 miles from Blackfoot, and Big Butte is 15 miles from Middle Butte and 20 miles from East Butte. The Lost River and Lemhi ranges may be seen behind the buttes.

North of Gibson there may be a few tepees along the roald. At the south end of the bridge over Blackfoot River there is a well-appointed ranch, the home of a prosperous Indian who owns an antomobile and has several hundred head of horses and cattle in the hills.

This bed is also of uniformly bigh quality, averaging 32 per cent or more of phorphoric acid, equivalent to 70 per cent or more of bone phosphate. The total quantity of high-grade rock in this main bed, estimatod for the areas examined by the Geological Survey in five years (not including Montana fields), is approximately \(5,000,-\) 000,000 long tons. This estimate includes only rock that is believed to lie at minable depths--that is, less than 5,000 feet from the surface-but does not inchude a vastly greater quantity of lower grade rock.
- The raw phosphate rock is not readily soluble, so that its action in fertilizing land is very slow, but the so-called superphosphate, made by treating the pulverized rock with sulphuric acid, which the smelters of the West can furnish in large quantity, contains phosphate in more easily soluble and available form. At present, on account of the cost of trans-
portation to the eastern markets, the demaud for western phosphate is confined to the Parifie Coast Siates, and even here it is in competition with phosphate rock imported from Ocean Iskml. Of the total phosphate rock produced in the Inited States in 1914, the Western States furnished less than one-half of 1 per cent. With the growing recognition of the importance of intensive agriculture and the consequent need of fertilizers in the great agricultmal distriwts that have passed the perion of maximum fertility, the demand for phow hate rock is sertain to increase. Athough at present the deposits in the Eastern States are more arcessible to markets, these deposits are already approaching partial exhaustion, so that this rich and extensive western field, already important as a grazing district, is destined to become the scene of another thriving industry.

Blackfoot River, \({ }^{1}\) which the railroad crosses 1 mile south of the village of Blackfoot, is the north boundary of the Fort Hall Indian Reservation.

Blackfoot city and river are named from a tribe of North American Indians. The name is explained as an allusion to an observation by pioneer whites that their leggins were generally

\section*{Blackfoot.}

Elevation 4,502 feet. Population 2,202. Ogden 158 miles. blackened by walking over the freshly burned prairie. The Indians commonly seen about the station and on the streets, however, belong to the Lemhi, Bannock, or Shoshone tribes. Blackfoot is the business center of a large, well-settled, and prosperous irrigated agricultural district, and is sometimes called the "grove city," because all the streets in the residence section are well lined with mature shade trees. It is noteworthy that the first trees ever planted in upper Snake River valley were set out around the Blackfoot courthouse in 1886, and a ditch was constructed for irrigating them. Three grain elevators and a flour mill suggest that a large part of the produce of the surrounding district is grain. The railroad station, one of the finest on the line, is built of pink rhyolite, a lava rock that is abundant in the hills to the east. Blackfoot is the junction point for branch lines to Mackay and Aberdeen. Gasoline motor trains are run on these lines and also to Pocatello. The city water supply is pumped from wells drilled to depths of 120 to 150 feet, which reach basalt (black lava) at 65 feet. These wells show the depth of sand and gravel deposited at this place by Snake and Blackfoot rivers in wandering about over the surface before settling in their present courses.

The electricity used in Blackfoot is brought from a power plant on Suake River at American Falls, 40 miles to the southwest. \({ }^{2}\) Gold placers on Snake River about 15 miles below Blackfoot have been worked intermittently in former years, but are now idle. In hard times a few men wash out a little gold by panning, but here, as elsewhere on Snake River, the gold is so flaky and fine that it is difficult to recover. Several attempts at large operations with dredges have been failures. A beet-sugar factory at Blackfoot, built in 1905 at a cost of \(\$ 500,000\), contracts for the beets from about

\footnotetext{
\({ }^{1}\) The mean discharge of Blackfoot River in 1906-1909, measured at Presto, a few miles upstream from the railroad, was 415 cubic feet a second. It has a recorded range from a maximum of 2,370 to a minimum of 64 cubic feet a second during that period. No hydroelectric power plants are in operation or in process of construction on this stream. Although the fall of the river from the Blackfoot dam down to the mouth of the
}
canyon is comparatively great, the storage of water for irrigation makes it impracticable to develop any very large amount of continuous power. Besides the 48,000 acres to be irrigated on the Fort Hall Reservation, 6,000 to 10,000 acres are irrigated by independent or private ditches taking water from the river.
\({ }^{2}\) The mean discharge of Snake River at Blackfoot during 1911-1914 was 7,930 cubic feet a second.

7,000 acres and pays \(\$ 5\) a ton for them. The average yield is about 12 tons to the acre, but some tracts under skillful treatment produce 20 to 22 tons.

The flat extending from Snake River, 3 miles west of the railroad, to the foot of the hills on the east is all under irrigation ditches, practically every acre being cultivated. The agricultural interests of this valley are diversified; no one crop predominates. On either side of the track are fields of alfalfa, barley, oats, potatoes, sugar beets, timothy, and wheat. Apple orchards are common. Many of the highways are lined by trees, and almost every group of farm buildings is shaded and sheltered by Lombardy poplars. This tall poplar, a native of Europe, is a favorite because the trees grow rapidly and, if planted in rows close together, make excellent windbreaks. They are propagated by means of cuttings. While viewing this prosperous and beautiful rural country the traveler should bear in mind that only a few years ago, not further back than 1885, the entire Snake River plain was one great sagebrush desert, wholly barren of trees and populated mainly by jack rabbits, coyotes, and rattlesnakes.

Wapello in 1914 was a new settlement consisting of a store, a school, and a railroad siding. The trees about a mile to the west are on the bank of Snake River, the main stream of southern Idaho. The name of the river is said to be the translation of the name of a tribe of Indians, the Shoshones, who live along its banks. The river

\section*{Wapello.}

Elevation 4,542 feet. Ogden 164 miles. rises among the high peaks of the Rocky Mountains in Yellowstone National Park, flows southward, broadening into Jackson Lake, and then northward, and near Rigly, Idaho, is joined by Henrys Fork, locally known as the North Fork, which rises in Henrys Lake, near the Idaho-Montana State line. The portion of Snake River above Henrys Fork is locally known as the South Fork. These two streams receive numerous tributaries, much of whose water the year round is melted snow. Below the confluence Snake River flows in a general southwesterly course for 150 miles, to a point a short distance below the American Falls, where it turns nearly westward.

The small settlement of Firth, which was started about 1911, is on the Snake River flat or first bottom. A three-span steel highway bridge crosses the river near by. Half a mile north

\section*{Firth.}

Elevation 4,564 feet. Ogden 169 miles. of Firth the river itself first comes into sight from the train. The bluff rising to the second bottom is just east of the track. Five miles east of Firth a second bluff rises about 50 feet to a third flat or bottom. This flat is composed of material brought down from the mountains by Blackfoot River and deposited on the plain at the mouth of its canyon.

Blackfoot River has had a hard fight for existence. When the earth's crust cracked and broke and quartzites and limestones were
faulted up across the river's course, it kept its place by grinding down its bed. The upturned hard rocks made a mountain range through which the river cut a narrow valley. This valley was afterward flooded with rhyolitic lava and the river had to grind its bed down again. After it had regained its grade through the rhyolite that blocked its course a stream of molten basaltic lava flowed down the channel, and for a long time all water that came this way was turned to steam. When the hot lava became cold rock Blackfoot River began a third time the task of sawing its bed down to grade. It has now sunk a deep, narrow canyon in the black basalt so deep that the road up the river is on a bench 100 to 300 feet above the stream.

The mountains east of Firth and Monroe, rising 7,000 feet above the sea, or 2,500 feet above the plain, are mostly made of limestone of Carboniferous age or older. They contain also younger rocks, but all the beds are so tilted and broken up that their relations are difficult to determinc. Some of the mountains are included in the areas of phosphate land withdrawn, for high-grade phosphate rock has been found here by members of the United States Geological Survey.

The belt of irrigated land on the west side of Snake River at Firth is very narrow, owing to the fact that the "lavas" are close to the river. By this term is meant the area in which black lava, crumpled into low ridges, makes a rough surface with very little soil. Many of the ridges are cracked open along their axes as a result of internal movement after the surface of the lava had cooled. These eracked folds are called pressure ridges. The soil on the "lavas" is too poor and thin to be cultivated, and is used only for pasturage. Farther downstream the "lavas" recede from the river bank, and irrigation projects \({ }^{1}\) have made great tracts of desert available for settlement.

\footnotetext{
\({ }^{1}\) Water is diverted from Snake River at the Minidoka dam, 80 miles below Blackioot, and at the Milner dam, 35 miles farther west. Jackson Lake, in Wyoming, just soutl of Yellowstone Park, has been made into a great reservoir in which 380,000 acre-feet of water, or enough to cover 380,000 aeres to a depth of I foot, is now stored by the United States Reclamation Service for use on the Minidoka project. During 1914 work was in progress of raising the dam at the outlet of the lake to such an extent as to make it passible to store 780,000 acre-feet. The expense of this new work is being borme by the North and South Side Twin Falls projects, and the additional water obtained will be used on these projects.

The Minidoka project includes 117,090 acres and during 191381,518 acres was
actually watered. The principal crops raised here are alfalia, grain, wheat, oats, barley, potatoes, sugar beets, miscellaneous lay crops, and fruit-chiefly apples. Stock raising and dairying are thriving industries.

At the Milner dam water is diverted for irrigating lands included in the Norih and South Side Twin Falls projects. The exact area to be irrigated has not been definitely determined but will be about 400,000 acres. During 1913 about 150,000 acres lying within the South Side tract was watered and in cultivation. The land is used for alfalfa, wheat, oats, pasture, apples, potatoes, and peas. Sheep and hog raising are profitable industries. The crops raised on the North Side tract are similar.
}

Two miles north of Monroe siding and \(1 \frac{1}{2}\) miles cast of the track there is a low sandy hill, on the top of which is the reservoir in which the water supply of Shelley, pumped from a deep

\section*{Monroe.}

Flevation 4,605 feet. Ogden 172 miles. well, is stored. This hill is basalt partly mantled with drifted samd. Northeast of it there is a series of moving sand dunes extending for about 8 miles in the direction of the prevailing winds.

Shelley is the trading point for several small settlements away from the railroad and is the center of an irrigation

\section*{Shelley.}

Eleration 4,619 feet. 1'opulation 537. Ogden 175 miles. district which has been brought to a high grade of cultivation. \({ }^{1}\) A hydroclectric plant on Snake River, 2 miles north of Shelley, derelops about \(\mathrm{S}, 000\) horsepower for use in this part of the valley.
West of Shelley the three buttes previously described are plainly visible far out on the Snake River lava plain. East Butte (Pl. XXX, \(B\), p. 112) appears to have 1 wo sharp peaks between which there is a saddle-shaped depression. Big Butte has a less pronounced sag top, and Middle Butte shows a gentle south shope and steep north slope, which indicate that it is not a volcano. To the northeast, beyond the first low range of lava hills, is the crest of the Caribon Range. In very clear weather one can sce more than 70 miles away a snowy peak coming into view over the crest of this range. This is Grand Teton, 13,747 feet high, the culminating peak of the range lying west of Jackson INole and the largest of the three peaks which have been known as the Tetons or the Pilot Knols since the members of the Astor expedition first saw them in 1S11. (See p. 17.)

At Cotton, a railroad siding 3 miles south of Idaho Falls, named for the owner of an adjoining ranch, an electric-power house may be seen on the bank of Snake River. Just north of Bach,

\section*{Cotton.}

Elevation 4,661 feet. Ogden 179 miles. another siding \(1 \frac{1}{2}\) miles south of Idaho Falls, is a grove in Tautphaus Park. This is the local fair ground, where the annual War Bonnet round-up is held. Every September for five days Idaho Falls is thronged with visitors. They come to see cowboys and Indians with their race horses, bucking horses, and wild steers gathered here to amuse the crowd and to contest for prizes in feats of skill in riding and rope throwing. The War Bomet round-up is to Idaho what Frontier Day at Cheyeme is to Wyoming and the round-up at Pendleton is to Oregon.

\footnotetext{
\({ }^{1}\) The variety of products of this type of land is shown by the freight shipments made from Shelley from July 1, 1913, to June 30, 1914. According to the statement of P. J. Bennett, a notary public in

Shelley, the shipments, in carloads, were: Wheat, 49; cats, 31; potatoes, 937 ; beets, 722; livestock, 104 ; mill stnff, 37; hay, 25; apples, 6 ; miscellaneous, 31; total, 1,945 carloads, or more than \(74,000,000\) pounds.
}

The city of Idaho Falls has a significant name and its site has had an interesting history. Snake River \({ }^{1}\) here falls over the edge of a lava flow, and the incessant wear of the running

Idaho Falls.
Elevation 4,708 feet. Population 4,827. Ogden 184 miles. water has cut the falls back into the lara sheet fully half a mile and they are now at the head of a narrow canyon, the walls of which are at one point barely 50 feet apart. Here a toll bridge was built in 1866, and the toll money collected from the freighters over the UtahMontana trail started a store and the store started a town. The town was called Eagle Rock, because for many years an eagle had a nest on the large rock in the stream just above the bridge. The name was changed to Idaho Falls a few years ago. Snake River forms the west boundary of the city, and the falls, the eagle rock, and the site of the original bridge are only three blocks west of the railroad.

Steel was laid on the main line north from Idaho Falls in 1879, and the railroad was completed to Silverbow, 6 miles from Butte, Mont., in 1881. The branch line to Yellowstone was completed in 1906. In 1914 a loop around the valley was being built from Idaho Falls northeastward to cross Snake River (South Fork) below Heise Hot Springs and thence go north to St. Anthony.

Idaho Falls owes its prosperity to the large quantities of farm products raised in its vicinity and is the most important shipping point between Ogden and Butte. Practically all the land in this part of the valley is in a high state of cultivation under irrigating ditches. The average yield of grain to the acre in the upper Snake River valley, on irrigated and dry land taken together, is estimated to be as follows: Wheat, 40 bushels; oats, 70 to 75 bushels; potatoes, 200 bushels; and beets, 14 tons. These averages are far below what the successful rancher gets, for oats on irrigated land make from 50 to 120 bushels an acre and weigh from 40 to 44 pounds to the bushel. Two hundred bushels of potatoes is a light yield, 200 sacks or 400 bushels a good yield, and it is reported that as high as 700 bushels an acre have been raised in one 20 -acre tract. In 1913 the distriet between Blackfoot and St. Anthony shipped 5,000 cars of potatoes, Idaho Falls alone being the shipping point for 2,500 cars. Potato bugs are as yet unknown in this region. Wheat on irrigated land yields from 40 to 60 bushels, weighing from 60 to 63 pounds to the bushel. It is reported that one tract of 720 acres averaged 38 bushels an acre in 1913, and as much as 70 to 75 bushels an acre has been produced in 10-acre tracts. It is said that almost no commercial fertilizer is shipped to this country. Crop rotation is practiced. When oat fields fail to yichl 85 bushels an acre, some ranchers sow them with alfalfa or clover for a few years. Seed pas and beans for planting kitchen gardens from Maine to California are grown in the upper Snake River

\footnotetext{
\({ }^{1}\) The mean discharge of Snake River at Idaho Falls from 1890 to 1892 , inclusive, was 10,300 cubic feet a second.
}
valley, and a seed-cleaning mill stands near the Idaho Falls station. Raw land with water right sold in 1914 for \(\$ 40\) to \(\$ 60\) an acre, and improved land brought \(\$ 65\) to \(\$ 160\) an acre, depending on the improvements, the lay of the land, and the location.

Red Duroc Jersey hogs are favorite money makers in this region, and sheep and cattle are ranged in the mountains in summer and pastured at the valley ranches in winter. The honcybee is respected and encouraged to greater industry. One man in this vicinity has 600 colonies of bees and keeps 4 tons of honey for their winter feed. Another bee keeper in the valley has 3,000 colonies. \(A\) factory at Idaho Falls extracts, stores, and ships hundreds of tons of alfalfa and sweet-clover honey every year.

A round stone tower (used as a tool house), which stands on the lawn at the north end of the Idaho Falls station shows the fitness of the local lavas, rhyolite and basalt, for use as building stone.

Soon after leaving the city \({ }^{1}\) the tram passes the first beet-sugar factory built in Idaho. It was erected in 1903 at a cost of a million dollars and has added much to the growth of Idaho Falls. Lincoln, a settlement of 300 people around the sugar factory, is reached by a branch line.

St. Leon is a siding at the crossing of Willow Creek. Far to the east, if the air is clear, two of the three Teton peaks are visible, and on the west, 12 miles from Idaho Falls, there is a low, broad, slightly sag-topped cinder cone, which holds a bowl-shaped depression about a quarter ghen 159 miles. of a mile in diameter. Near this cone in 1914 there was a single tract of about 2,000 acres of dry-farm wheat.

The sagebrush plain just north of Ucon suggests what the whole valley once was, and the fertile fields already passed show what can

\section*{Ucon.}

Elevation 4,799 feet. Ogden 192 miles. be done by irrigation. Very little of the soil of the Snake River plain is derived from the basalt on which it lies. There is an abrupt change from the soil to the lava, and the exposed surface of the lava shows practically no trace of disintegration. The soil near the rivers, on their present or former flood plains, is largely river deposit, and that near the mountains is mountain waste, but the fime soil that covers the plains at a distance from the mountains is mainly wind-blown dust, which has accumulated gradually in the centuries since the basalt was poured out The sources of the dust are the naked cliffs in the mountains, talus slopes, stream deposits on the margin of the plains, and volcanic ashes. The Market Lake Craters (see p. 137), truncated voleanic cones 10 miles northwest of the track, and other volcanoes of that type threw out large quantities of volcanic dust. A vigorous growth of sagebrush attests the good quality of the soil.

\footnotetext{
\({ }^{1}\) Mileposts north of Idaho Falls give the distance from this junction.
}

Near Ueon, as elsewhere in the valley, all trees except those along Shake River have been planted by the settlers. The main highway from ldaho Falls to Yellowstone Park parallels the railroad for several miles, but farther north it follows section lines, making the distance between towns by the highway somewhat greater than the railroad mileare.

North of Ueon the summit of the third and lowest of the three Troton peaks comes into view; farther north, at \(\Lambda\) shton, they come into full view. The Tetom Mountains were named from an Indian tribe. In "Astoria," W'ashington Irving's entertaining description of dohn dacoh Astor's expedition which crossed this country in 1811 on its way to establish a trading post at the mouth of the Colmmbia, there is the following reference to these mountains:

The \(\Lambda\) stor party came into Idaho near Victor, the present terminus of a branch of the Oregon Short Line at the west foot of the Tetons, and followed down the valley of 'Teton River, reaching Menrys (North) Fork of Snake River near the present site of St. Anthony, where there was then a "fort" established by Mr. ILenry, of the Missouri Fur (\%o. At the fort they built camoes and started down Snake River. The next day they reached some falls about 30 feet high, took another elay to portage aromed them, and then pursued their jourmey southward from the present site of Idaho Falls. They soon found the river unnavigable, had to abandon their canoes and strike across combtry, and endured terrible privations the following winter, tho accommt of which is told in thrilling marrative by Irving.

A bramch railroad ruming northwest from Uron passes through Menan, 2 miles south of the Market Lake Craters.

Righy is the largest lown in the east end of Tefferson County and is the trading and shipping point for an agricultural district having a population of several thousand. It was organized in

Rigby.
Elevalion 4, 51 feet. Iopulat ion 555. Ogden las milas. 1886 hy the Mormon apostle John W. Taylor, from Utah, and William F. Rigly, of tho local church authorities. A post office was established in 18S8, and the railroad eame in 1899 . Within 15 or 20 miles above Righy, on Snake River, are the headgates of a dozen or more canals in onestretch of the river-a camal every three-quarters of a mile. These camals, when full, carry every minute enough water to flood \(S_{2}^{3}\) aceres to a depth of more tham 1 foot. This great system of canals was built not by the Govermment or by promoters, but by the ranchers whose land they inrigate. The first canals were built between

1879 and 1884 , when settlement beran in this seedion. Potatoes are tho leading crop near Righy and a rommon yield is 300 bosheds an acre. Under especially favorable ronditions of soil freathonent 700 bushels aresaid to have boen taken from 1 arere. Wheat is reported to average about 45 bushels an arre, oats 65 bushels an arre, and beots 20 tons an acre.

Hejse Hot Springs, 11 miles east of Righy, is a resort on tho north bank of Smake Rivere (Somth Fork), at the loot of the wall formed by rhyolite dilted and overlain by horizontal younger lava flows. \(\Lambda\) bog boted that will areommodate about 150 greste and a bathorose with two concrete pools have been built at hot epringe which issue from the bank of the river. 'The springs have tomperatures ol \(126^{\circ} 10140^{\circ}\) Fahrenheit. 'Tho water smolls of sulphur and is stronerly mineralized. Bathing in it is said to relieve rhemmatism. Fishing is popmlar at this resort in summer and elk homting in winter.

For a number of miles noth of Righy the milroad erosses a deltalike deposit built by Suake River. The stream bringes great quandities of sediment down from the mountains, and here, on the Suake River plain, where the grade of the stream is derprased and its velocity is slackened, murh of its load has been dropped. As a result, a low, broad fan has been buit, up, areoss which the river now flows in a mumber of chamels. Henrys Fork joins Snake Rivar at the hase of the two craters seen a lew miles to the west.

Between Righy and Lorenzo the ralload rosses the "dry bed" of Snake River. 'This was lomnerly the main wateroomse, bot in 1894 the rurrent shifted to the channcl it now ocrupies, north of Lorenzo. 1 t times there is water in the old chamel, as part of its upper course is used as an irrigating camal.

The beet-loading platform at Lorenzo indicates one of the principat crops in the virinity. Just after passing the station the train reosses the main channcl of Snake River, which at this point

\section*{Loremzo.}

Elevation 4, stis foet. Population 379.* Ogden 202 miles. is 500 feet wirle. \({ }^{1}\)

The Market Lake Craters, 4 miles west of Lorenzo, are two low buttes, broad of base, with gently sloping sides and broad tops, rising 500 to 600 feet above the surrombling plain. Each butte has an oval base measuring about 1 by 2 miles, and each has a well-tefined crater in its summit about half a mile in diameter and 150 to 200 feot deep. The beds of ejected material slope away in all directions at sharp angles aromol the rims

\footnotetext{
\({ }^{1}\) The discharge of Suake River at Heise IIot Springs, about 10 miles above this bridge, in 1910-19[3, averatged \(8,920 \mathrm{cubi}\) (feot a second. The milximmonand minimum recorded discharges are 36,000 and 2,310 cubic feet a second.
}

The river passes through areveral canyons where dam siles could be found. The fall betwern Jackson Take and Wrarys Fork is about 2,000 iceot. A large amount of potential jower therefore exists along this stretch of Snake River.
of the craters and flatten toward the base, where they become nearly horizontal. Within the crater rim the beds slope toward the center. Sand and gravel contained in the strata of which the craters are built indicate that these volcanoes were upheaved somewhat explosively through an old river or lake deposit. There is nothing to show that either cone poured out a lava stream. Material brought into the craters by rain wash and wind has given fairly level floors to the broad bowl-shaped depressions. The two cones are supposed to be of about the same age and are moderately recent. The name was derived from their proximity to Market Lake, a former shallow body of water so called because ducks congregated on it in such numbers that hunters went there regularly for a supply of meat.

A black volcanic tuff, an open-structured rock made of partly cemented fragments and dust produced by volcanic explosions, is used for building in the vicinity of Rigby and Rexburg. This rock is quarried on the bank of Snake River at the base of the Market Lake Craters. Houses are built also of the pink rhyolitic lava which occurs abundantly in the hills at the east edge of the Snake River plain.

After crossing Snake River the train goes through a grove of native cottonwoods along the channels of the river. This is the only natural grove on the railroad between Ogden and the Targhee National Forest, north of Ashton.

A mile or two east of Thornton a bluff rises abruptly 100 feet or more to a bench. The foot of this bluff is the boundary between the rhyolite that forms the low hills to the east and the

\section*{Thornton.}

Elevation 4,559 feet. Ogden 205 miles. basalt that makes the floor of the Snake River plain. The relative ages of the two rocks are indicated by the fact that the rhyolite is deeply weathered and in places its beds are disturbed from their original nearly horizontal attitude, while the basalt is unweathered and its horizontal beds abut against or overlap the older rhyolite.

Several miles to the west there is a low-lying light-colored band of sand dunes with a group of hills at its north end.

From Winder, a siding and beet-loading platform, a clear riew may be had of the Market Lake Craters. Concrete tile for culverts is made here from sand and gravel dug beside the track.

Winder.
Elevation 4,555 feet. Ogden 207 miles. Near Rexburg the train crosses a large irrigating ditch, the water for which is taken from Teton River. Ricks Academy, a Mormon school, stands near the edge of the town. The numerous Mormon schools and churches in this region attest the fact that eastern Idaho was settled with the overflow population from Utah. In the late seventies and early eighties the fertile spots of northeastern Utah were already occupied and the stream of emigrants moved northward into Idaho.

(iEOLOGIC AND TOPOGRA1'HIC MAP
YELLOWSTONE PARK ROUTE
From Oglen, Utah, to the Yellomntone Niat whal Pirk

UNITED STATES GEOLOGICAL SU゙RVEY david white Chef Genlugist K B Matrball Cblef beverayher \(1: 115\)

Rexburg (see sheet 15n, p. 148) was founded in 188:3 by Thomas Ricks, and the present name is a corruption of Rickshurg. Up to 1896 Rexburg was composed mostly of onc-story dirt-

\section*{Rexburg.}

Elevation 4,866 Ieet. Population 1,s93. Ogden 210 miles. roofed houses, but it is now a prosperous and wellappointed village, the county seat of Madison County, and the center of an irrigated agricultural district where crops never fail. Seed peas constitute one of the important crops. The produce forwarded from Rexburg in the 15 month between January 1, 1913, and April 1, 1914, was: Grain, 679 cars; flour, 256 cars; sugar beets, 226 (ars; livestock, 190 cars; miscellaneous, 92 cars; total, 1,443 cars. Rexburg station is built of the local rhyolite or pink lava. Soon after leaving Rexburg the train crosses Teton River, \({ }^{1}\) which drains Teton Basin and the west flank of the Teton Mountains.

Sugar City is a settlement around a beet-sugar factory which was built in 1904 at a cost of \(\$ 750,000\). This factory

\section*{Sugar City.}

Elevation 4,890 feet. Population 391. Ogden 214 miles. contracts for the beets from about 7,000 arres and pays \(\$ 5\) a ton for them. A branch of the railroad runs west from Sugar City to Plano, tapping the lower end of the Egin bench, a celebrated and prosperous farming distriet on the west side of Henrys Fork.

Four miles northeast of Sugar City is Teton City, a village of a few hundred people on the bank of Teton River, in the midst of grain and pea ranches. This settlement also was founded by Mormons, in 1883. The gently sloping hills from Teton (ity east to Canyon Creek are made up of rhyolite interbedded with a few thin layers of hard black basalt. The alternate layers of two diflerent kinds of lava in these hills show that in the time of volcanic activity in this part of the country thick flows of rhyolite were succeeded by lesser flows of black lava. That the flows were separated by lapses of considerable time is shown by the presence of layers of soil between them. In a deep well hole sunk in the lava several miles east of Teton City the drill passed through a number of layers of soil between beds of basalt and rhyolite. One bed of soil was encountered at a depth of 400 feet.

A few miles north of Sugar City is a railroad siding known as Wilford. St. Anthony, the county seat of Fremont County, is hidden in the trees ahead. The building with a white dome seen on the left on entering the town is the county courthouse, and the large gray building just beyond the station is a Mormon temple.

\footnotetext{
\({ }^{1}\) At the mouth of its canyon, a few miles east, Teton River has a mean discharge of about 900 second-feet. The maximum
and minimum discharges recorded are 7,620 and 88 second-feet. There is a small hydroelectric power plant on this stream.
}

The location of St. Anthony, like that of Idaho Falls, was determined by the fact that the river has here cut a narrow canyon through basalt, with walls so close together that a

\section*{St. Anthony.}

Elevation 4,969 feet. Population 1,238 . Ogden 221 miles. bridge was easily built. Previous to 1893 this place included only "jack rabbits, lava rock, and Old Man Moon." C. I. Moon, the origimal settler, came here in 18S7, built the first bridge and store, and called the place St. Anthony because of its fancied resemblance to St. Anthonys Falls, Minn. The river in the canyon has a fall of about 30 feet, and the walls at the highway bridge are barely 50 feet apart. Immediately below the bridge the river spreads out to an extreme width of 800 feet.

In the spring of 1893, when St. Anthony was made the county seat of Fremont County, the settlement consisted of three \(\log\) cabins and one two-story \(\log\) store building. The population increased rapidly from that date and now numbers about 2,000 persons. St. Anthony has two large schoolhouses, one of which cost \(\$ 60,000\), a \(\$ 70,000\) courthouse, an opera house, a large flouring mill, grain elevators, three banks, and a city water system supplied by pumping with electric power generated by Snake River.

One of the principal industries in the immediate vicinity of St. Anthony is the raising of seed peas. In 1913 there were 26,000 acres of seed peas in Fremont County. They are grown here extensively because the soil and climate are favorable, and under irrigation they yiold heavily. There are nine seed warchouses in St. Anthony. The shipments from St. Anthony for the year 1913 were 396 cars of peas, 470 cars of oats, 259 cars of wheat, 10 cars of barley, 50 cars of potatoes, 106 cars of merchandise, 121 cars of stock, 52 cars miscellaneous; total, 1,464 cars. Thousands of head of stock are wintered in this vicinity each year after summering in the mountains.

As the train leaves the station a glimpse is had of IIenrys Fork of Snake River. Twelve miles west of St. Anthony a group of hills known as the Sandhill Mountains rise about 1,000 feet above the plain. From a distance they appear to be two lines of hills with nearly parallel tops, but on entering the gap between these lines of hills one finds a cultivated valley surrounded on three sides by a ridge, the crest of which has rudely the ontline of a mule shoe. The lava that caps this ridge slopes away on all sides from the central valley. This group of hills apparently is the broken-down remnant of an old crater. \(\Lambda\) great mass of yollow sand, drifted in from the southwest, is lodged in the north side of the crater.

Sand dunes 8 to 10 miles west of St. Anthony are plainly visible from the train. They consist of fine sand, which is drifting north-
eastward, and they cover several square mikes. Most of the moving dunes are not more than 50 feet high, and between some of them the barren basalt bedrock is exposed. A well in the midst of these dunes is the source of drinking water for ranchers in the sand hills above.

A short distance north of St. Anthony there is a siding known as Twin Grove. To the west back basalt can be seen along Hemrys Fork, and there is a broad view beyond the Sandhill Mountains, showing the uneren surface of the lavas in the distance.

Before reaching Chester the train passes through a small cut in basalt and the plain on the cast is seen to be less smooth, owing to the thimens of the soilon the irregular surface of the underChester. lying black lava. The low and gently sloping hills

Elevation 5,073 feet. Ogden 227 miles. beyond are underlain ly rhyolite. Fiar to the morth is the flat-topped ridge which forms the fromt of the great elevated volcanic province around Yellowstone Park and which terminates the Snake River plain. Chester is the site of a grain devator and a few houses. Where the railroad crosses fall River \({ }^{1}\) there are exposures of basalt in the banks and bed of the stream.

After crossing Fall River the railroad leaves the flat floor of the Snake River plain and heads directly for Ashton over a slightly rolling surface of basalt which is exposed in the railroad cuts. The porous, cellular, or vesicular character of this black rock can be seen from the train. The cavities were developed by expansiou of gases (probably for the most part steam) contained in the molten rock and are a common characteristic of the Snake River lava.

Practically all the cultivated land hereabouts is in grain, and four grain elevators at Ashton are seen directly ahead. Ashton, which was started in 1906 when the railroad reached this

\section*{Ashton.}

Elevation 5,256 feet. Population 502. Ogden 235 miles. point, was named for the original owner of the town site. The water supply is pumped from a deep well, and electricity is brought from a hydroclectric plant on Snake River. Ashton is an outfitting point for the fishing and hunting grounds to the north and cast and for camping parties bound for Yellowstone Park.

The view of the Teton peaks from Ashton (fig. 15) is supert) and doubtless has been the inducement for many a tourist and sportsman to lave the main line for the Teton Range and the Jackson Hole country in pursuit of elk, sheep, trout, and minmpassed momiain scenery. Owen Wister's "Virginian" was glad to get out of these mountains because, as he explained, "They 're most too big."

\footnotetext{
\({ }^{1}\) The following measurements of Fall River were made about 12 miles above the railroad bridge in 1904-1909: Maximum discharge, 4,160 cubic feet a second;
minimum, 168; mean, 800. No information is available concerning power sites. Water from the river is used for irrigation, but to what extent is not known.
}

The arerage American, who has only a vague conception of the natural beauties of the Rocky Mountains and imagines that real alpine forms are found only in Switzerland, must be surprised when he first sees the lofty peaks of the Tetons. Even a man who has climbed the Matterhorn would hesitate before daring to try Grand Teton. According to local report, this peak has been ascended only twice, in 1872 and 1894. As the snow-clad mountains along the Alaskan Archipelago, rising to cloud-reaching heights, stand with their feet bathed in the ocean, so from a viewpoint near Ashton the Tetons, towering to the sky, rise from the billowy surface of a sea of golden grain. The people who live within the shadow of these mighty peaks soon look to them only as barometers of to-morrow's weather; they no longer see the grandeur that thrills the traveler, heartens the hunter, and inspires the artist.

Figure 15.-The Three Tetons, looking east.
Ashton is the junction point of the Victor branch of the Oregon Short Line, which was built to Teton Basin in 1912. On this branch \(1 \frac{1}{2}\) miles from Ashton is Marysville, a small rural setflement that can be recognized from a distance by its grain elevator. From Marysville to Jenkins all the railroad cuts appear to be in glacial material, and probably a glacier heading in the Teton Mountains once extended nearly to Ashton. The canyons of Fall River and Squirrel and Bitch creeks, which the branch line crosses on high trestles, are cut in rhyolite. It was along Bitch Creek that the "Virginian" idled and fished on the day after Steve and Ed, the horse thieves, paid the penalty. Drummond, Driggs, Tetonia, and Victor are the main settlements on the branch. Victor, the terminus, is a small village 46 miles from Ashton, from which the mail stage road climbs over the Teton Range to Jackson Hole. There is a trail over the range from Driggs also. On the west side of the Teton Basin, near Victor, is the

Horseshoe Creek coal distried, which contains several beds of execllent bituminous coal of (retaceons age.'

North of Ashton fields of grain shope gently to the river. Here the Snake River plain euds and the train cuters a region of wooded hills. The upland against which the great plain terminates is the edge of the Yellowstone Park plateau, an clevated area of volcanic origin. In geologically recent time (Eocene and Neocenc epochs) volcanoes on the east, north, and west of the park poured out enormous volumes of molten rock. Flows of rhyolitic lava filled the depressed basin between the encircling mountains and moved down the outer slopes to a considerable distance. It is the outer edge of these lawa flows that the train crosses on entering the shallow rock-ribbed canyon of Henrys Fork. Here outcrops of rhyolite are seen close to the track for the first time on this line. From the cutrance of this canyon to the end of the railroad the route is across lavas which are older than the basalt underlying the Snake River plain. Rhyolite is the predominant rock in Warm River canyon and on the Continental Divide, but basalt, which is interbedded with the rhyolite, and is much more resistant to weathering and erosion, underlies the mesas and caps the canyon cliffs.

In the canyon of Henrys Fork rounded outcrops of rhyolite stick their heads above the river and form the lower part of the vertical walls. Basalt makes the rim of the canyon, and its columnar jointing and cellular character may be seen from the train. The trees are Douglas fir, outliers of the Targhee National Forest, within whose boundaries the route continues to Reas Pass.
Warm River station is at the junction of Warm River and Henrys Fork. The few settlers whose homes are along the valley bottoms cultivate the benches above the canyon rim. Warm

\section*{Warm River.}

Elevation 5,284 feet.
Population 146.* Ogden 242 miles. River is so called because it has a warmer temperature than that of other waters in the region. This immediate vicinity fits the description of the country where Owen Wister's "Virginian" caught and hung the horse thieves. That job was done west of the Tetons and a day's ride from Bitch Creek.

Here the railroad leaves Henrys Forh and follows the canyon of Warm River through the wildest scenery on the entire route from
\({ }^{1}\) The coal beds are irregular in thickness and extent, are displaced by numerous faults, and dip at steep angles. The Government geologist who examined the field concluded that the coal beds are thick enough to be mined profitably if they were horizontal; but the steep dip
and the breaks in the continuity of the beds render mining expensive, diflicult, and uncertain. The district can supply a local domestic trade for a long time, but can not be reckoned as a factor in the great coal industry of the Rocky Momtain region.

Ogden to Yollowstone. The first bridge above the station crosses Robinson Creek. \({ }^{1}\)

Just beyond this bridge the train crosses Warm River and begins to ascend along its west bank. The grade of the track is greater than that of the stream, so the train is soon well above the dashing, tumbling, noisy brook. From this place to Mesa the angler will mentally choose his flies and long for a chance at the trout that must be hidden in those pools and rapids. Little will he care that the roadbed is a niche cut in rhyolite and that there is a small fault marked by little springs in opalescent-colored lava just below milepost 62. Immediately at the milepost the rhyolite is turned on edge, crushed, and clay streaked, but the beds at the top of the cut are horizontal, showing that there was considerable disturbance and faulting before the later lava flow. The dashing mountain stream, tumbling and jumping over bowlders, makes a more vivid appeal to the traveler than the evidences of that stream's ancient history, which is recorded in the thick beds of finely sorted sand and the thin beds of gravel exposed above and below the tracks at milepost 63 . This material was deposited in ponded water after the river had cut its channel nearly to the present depth. To the question, What and where was the dam that made a pond 100 feet deep in this canyon? the geologist has not yet found an answer.

Near milepost 63 a 561 -foot tumel is to be driven to avoid the danger from the scaling off of rocks in the points around which the track now winds. A short distance beyond the trestle, at milepost 66, the train leaves the canyon and comes out on a flat surface underlain by basalt.

Mesa is as siding and \(Y\) in a natural park in the forest. The principal timber seen here is Douglas fir. From Mesa the serrate crest of the Teton Range is again in view, and a mile or two

Mesa.
Elevation \(b, 920\) feet. Ogrden 251 miles. away on the right is the front of a great sheet of lava, now covered with grass and trees, rising 500 feet above the flat.
About 4 miles southwest of Mesa Henrys Fork plunges over a precipiese 96 feet high with a sheer drop, and a mile below there is
\({ }^{1}\) The discharge of all three streams has been gaged near this station with the following results, expressed in second-feet (cubic feet a second):
\begin{tabular}{|c|c|c|c|}
\hline & Maximum. & Minimum. & Mean. \\
\hline Ilenrys Fork, 1910-1913 & 3,300 & 705 & 1,260 \\
\hline Warm River, 1912-13. & ,900 & 192 & 295 \\
\hline Rohinson (reek, 1912-13. & 1,140 & 53 & 180 \\
\hline
\end{tabular}

There are no existing power developments on Warm River and Robinson Creek, and the water of these streams is not used to any great extent for irrigation.

UPPER FALLS, HENRYS FORK OF SNAKE RIVER.
Photograph furnished by Oregon Short Lme Railroad Co.
another fall of about 70 feet. (Som Pls. XXXIl and XXXIH.) The river between these two falls thows rapidly in a canyon about 250 feet deep. The land in the vicinity is now owned by a Montana electric company, whicle contemplates building a dan 2 miles above the upper fall and carrying the water to a power house blow the lower fall, thereby getting a drop of about 450 foen with a force sufficient to develop 40,000 horsepower.

About a mile north of Mesa, east of the track, there is a beaver pond, recognizable by dead trees standing in a marsh. From Mesa to Fishateh the railroad rums in a lane hewn through the forest and there is little to be seen. All the rock exposed is dark porous basalt. The low ridges through which railroad cuts have been made to depths of 6 to 10 feet-for example, that just north of milepost 70 -show either arched structure or a roof-like form cracked along the top. These are called pressure ridges and seem to have been prosluced by an internal movement in the lava after the surfare had hardened and become more or less rigid.

A State fish hatchery built in 1908 is located at the station called Fishatch, on the bank of Warm River. The main building is a log structure 40 by 80 feet, equipped with 56 hatehing

\section*{Fishatch.}

Elevation 6,119 feet. Ogden 257 miles. troughs. These troughs are supplied with water from Warm River, which passes under the railroad at this point in a concrete culvert. The hatchery breeds trout exclusively, including rainbow, castern brook, and native trout. The hatchery has a capacity of \(3,000,000\) fry annually. Beef liver, ground very fine, is the principal food of trout fry. Within the State reservation of 1,280 acres there are large springs of fresh water with a temperature of \(42^{\circ}\), which supply the spawning pond and several concrete rearing ponds. Black and brown bear and moose are hunted successfully in this vicinity.

For half a mile north of Fishatch the view from the rear of the train shows the distant snowy Teton peaks framed in a lane through the evergreen forest. On the west, at milepost 75 , an old beaver dam, now grown up with willows, is seen in the ponded Wam River close to the track. Fishing for native and castern brook trout is said to be good here.

At milepost 78 the train enters the lower end of the Island Park country. Here are pits from which sand is taken by steam shovel for railroad ballast. Island Park is an open sagebrush

\section*{Island Park.}

Elevation 6,290 feet. Og len 265 miles. tract several square miles in area, surrounded by a solid wall of lodgepole pine with a border of aspen. This broad flat is underlain by sand and fine gravel, composed largely of disintegrated volcanic rocks with a considerable percentage of black volcanic glass or obsidian. This mixed material \(38088^{\circ}\) - Bull. 612-16-10
is either alluvium deposited by Henrys Fork on its wide valley floor or a lake deposit. It may have been laid down in a lake caused by the ponding of the river by a glacier in the canyon below Mesa. An ice tongue or glacial dam in this canyon would have held the water back in a broad lake in which would have accumulated a deposit of sand and gravel such as is seen in the ballast pits. A low rise indicated by a slightly greater height of the tree tops about 3 miles west of Island Park is said to be an old volcanic crater. Mrs. E. II. Harriman has a large cattle ranch on the river 6 miles west.

At milepost 84 the railroad crosses Buffalo River, and a third of a mile north of the bridge there is a small cut in rhyolite, the first exposure of bedrock along the track north of Island Park. This stretch of straight track heads nearly into the gap below Henrys Lake. On the left of the gap is Sauttelle Peak, flat-topped and rising 10,123 feet above sea level, or 3,800 feet above the river. Three miles west of it is Bald Peak. The mountains east of the gap are called the Henrys Lake Mountains.

Trude is a siding for loading lumber and the station for Macks Place and the fishing clubs on the river. Snow lies so deep here in midwinter that the residents get about on snow-

Trude.
Elevation 6,327 feet. Ogden 270 miles. shoes or skis and by dog teams. North of Trude rhyolite is seen in the rock cuts. Smoothed rock surfaces and large rounded bowlders perched on nearby knolls indicate that this country once was covered by a glacier.

At milepost 90 Henrys Fork of Snake River is seen on the west. The stream crossed at this point is formed by the discharge of Big Springs, which are half a mile east of the railroad and

\section*{Big Springs.}

Elevation 6,409 feet. Ogden 275 miles. are reached by a wagon road that goes through a straight-cut lane in the forest to Big Spring Inn and a fishing club house. Most of the water issues at two places about 300 yards apart, and at each are several springs. The discharge of the two groups joins midway between them and at a bridge just below the junction is 120 feet wide and 3 to 4 feet deep.

A mile and a half north of Big Springs is a high wooded slope trending southeastward, the front of a great flat-topped mass of lava which came from Yellowstone Park. As the train climbs the mountain soon after leaving Big Springs, rhyolite is seen in the railroad cuts and bowlders of black glistening obsidian or volcanic glass strew the surface. These bowlders have come from ledges in the mountain side above the track. Beyond milepost 93 there is a wide view over a timbered plateau and the alluvial flat of Henrys Fork. At the upper end of this flat is Henrys Lake, which is not visible from the train. One of the railroad cuts near by yielded the material for building the station at Yellowstone.

At Reas Pass the train stops to test the air brakes before deseending the grade to Yellowstonc Park. Here the route crosses the Continental Divide, going from the Pacific slope

Reas Pass, Idaho.
Elevalion 6,938 feet. Ogden 281 miles. to the valley of a small steam that flows into Madison River, thence to the Missouri, the Mississippi, and the Gulf of Mexieo. Where the train enters a rock cut just beyond the railroad \(Y\) on which the helper engine turns before going back, a signboard marks the State line between Idaho and Montana. This board says that the boundary is 9 miles from Yellowstone and 6,914 feet above the sea. The rock in the cut at the divide is light-colored rhyolitic lava, but the ledges 100 feet above the track on the east are obsidian or volcanic glass. This black glass, which crumbles rather rapidly under the sudden and great changes of temperature common at this altitude, is the source of a large part of the sand that covers the broad flats below.

That glaciers once existed on the mountains around Reas Pass is shown by the ice-sculptured surface, by ald glacial moraines, and by large bowlders which have evidently been transported by ice. Such bowlders may be seen as the train descends the north side of the mountain. The timber at Reas Pass is mostly a dense growth of young lodgepole pine, through which it is difficult to travel except by the opened roads and trails, because of the intricate network of fallen poles killed by fire.

The train runs slowly down the steep grade north of the pass as it follows a small, rapid brook which to a fisherman's eye looks like good trout water. Light-colored rhyolite is exposed in the railroad cuts. Down a little valley the train gocs, and the view reaches no farther than the wooded flat-topped mountains near by. In fact, there is practically nothing to see but trees from this point to Yellowstone station. At milepost 105 the foot of the grade is reached, and from this point to Yellowstone the road bed is on the flat pine-covered surface of a wide alluvial deposit, made by Madison River when it flowed over this part of its flood plain.

The sand carried by the river and spread on its flood plain is dericed from the crumbling of volcanic rocks and owes its dark color to a considerable percentage of black voleanic glass. The forest here is practically all young lodgepole pine, sometimes called jack pine.

As the traveler alights at Yellowstone, the terminus of the railroad, his eye will turn from the attractive station, built of pink rhyolite, to the four-horse stage coaches waiting for passen-
Yellowstone, Mont. gers. He may not notice that the engine is within
Elevation 6,669 feet. Ogden 291 miles.
a few rods of a line of blazed trees at the end of the station grounds, but those blazed trees are significant.
They mark the boundary of Yellowstone National Park.

\section*{OGDEN, UTAH, TO SAN FRANCISCO, CAL.}

The railroad leaves Ogrlen (see sheet 15, p. 102) in a northwesterly direction and follows for a mile or more the old line of the Central Pacific Railway, which made a considerable detour around the north end of Great Salt Lake. At milepost \(781^{1}\) the present line diverges from the original route and, swinging gradually westward, turns directly away from the great mountain wall of the Wasatch Range. It is 15 miles from Ogden to the eastern shore of Great Salt Lake, and for 32 miles beyond this point the way lies directly across the lake to its western shore.

As the train goes toward the lake the view from the rear, or observation platform, is one of the finest panoramas of mountain scenery to be had from the railroad, especially if the light and weather are favorable. Just back of Ogden appears an almost sheer mountain wall of dark and rugged ridges standing above the flat valley in the foreground. Such an abrupt face on one side is more or less typical of the Great Basin mountains and is believed to be significant of the manner in which they have been formed. There is little doubt that these mountains have originated by fracture of the earth's crust and uplift along one side or settling along the other side of the crack. In geologic terms, the mountains are upheaved fault blocks. Since the faulting the forces of erosion have more or less rounded and scored the original cliff or scarp made by the break. The deep noteh across the range in the middle background is the canyon of Ogden River, which flows into Weber River a few miles below Ogden.

The railroad extends across the level lands that border the east side of Great Salt Lake. For several miles most of this land is cultivated and is richly productive after it has been "broken"-that is, after it has been plowed and partly leached of its alkali salts by irrigation. The common crops are hay, grain, sugar beets, and vegetables. Tomatoes raised here are camed in considerable quantity. In certain favorable situations along the foot of the mountains peaches, apples, and other fruits are grown.

Near milepost 778 a line of steel towers of an electric-power transmission line crosses the railroad from north to south. This conveys current from large hydroclectric plants on Bear River, near Collinston, 20 miles north of the lake, straight across the meadow flats to Salt Lake City and beyond to the Bingham mines and to the smelter at Garfield.

\footnotetext{
\({ }^{1}\) Mileage along the route is marked by milepost boards on telegraph poles and numbers on semaphore signals, culverts,
and bridges. The figures given represent
distance from San Francisco and show the westbound traveler how far he still must go.
}

GEOLOGIC AND TOPOGRAMHIC MAP
IELLOWSTONE PARK ROUTE
Fromb U世ilets, Lials, to the Yellonsatome Natmonal Park

 1:9:

West Weber (see sheet 15, p. 102) is a farming commmity in the midst of a broad, gently sloping plain, where water for irrigation may be distributed by ditehes almost anywhere.

\section*{West Weber, Utah.}

Elevation 4,210 feet. Population 823.* Omaha 1,006 miles. Artesian wells bored along this side of the lake, to a depth of 300 or 400 feet, yidd natural flows of pure, fresh water that has come down from the mometains in porous layers of rock that lie underneath some relatively impervious layer. Along the rast side of the lake this fresh water may even be tapped in wells put down through the salt, water of the lake itself. Beyond West. Weber the gromd becomes more and more salty on the surface, and the cultivated lands diminish in area, the salty meadows or marshes being used for pasture. A few miles farther west the ground, during the dry season, is white with crusted salt.

Little Momtain, the name of a railroad siding at milepost 769 , refers to the low, rounded terraced hill north of the track. The terraces here, as on the islands in Great Salt Lake and around Promontory Point, mark old shore lines of Lake Bonueville, described on pages 97-99. To the south, near the shore of the lake, are the remains of evaporation vats, formerly used in the manufacture of salt by crystallization from the water of the lake. The industry of this place was ended by a general rise in the lake level during recent, years (see fig. 11, p. 95), but large quantities of salt are still manufactured near Saltair, at the south end of the lake.

The building of the Lucin cut-off, completed in 1903, was an epochmaking event in railroad construction. By this great fill and trestle straight across Great Salt Lake the main-line route from Ogden to San Francisco was shortened about 44 miles and the steep and troublesome grades around the north end of the lake, including one climb of 680 feet to the old Promontory summit, were eliminated. The new line is level for 36 miles and the grade is almost inappreciable for 36 miles more, being nowhere over 21 feet to the mile, or less than 0.5 per cent.

The cut-off was constructed at first as a gravel fill across the shallow marginal portions of the lake and as trestle work through the deeper part. Much of the trestle work has since been replaced by fill. The gravel used at first came from pits near the railroad, the largest of which was near the west side of Promontory Point. Rock was originally used only on the surface of the embankment, but later, in places where reconstruction was necessary, rock was employed exclusively. The rock has been whained from Promontory Point and from the immense quarries near Lakeside. The dark-gray, almost black limestone from the Lakeside quarries now covers the surface of the fill all the way across the lake.

An unexpected difficulty was encountered after the construction was well under way. It was found that the material which was dumped into the lake and which evidently sank deep into the mud did not at once reach a firm and permanent foundation. Long after the roadway had apparently been completed and trains had been run by way of the new route, successive "sinks" occurred, especially along certain portions of the route. The weight of the filling material, with the added weight and vibration of passing trains, seemed to break through some sustaining layer in the lake bottom and then a whole section, track and all, would settle into the lake, and traffic would have to be diverted to the old route until the "sink" could be repaired. This happened so frequently that it might fairly have discouraged the railroad company, but perseverance finally conquered. With the sinking of the track, ridges of mud appeared on both sides, squeezed up from the lake bottom by the subsiding fill. Just beyond Bagley, which is only a section house and side track on the cut-off, remmants of these mud ridges can still be seen, although, naturally, where they rise above the water they are being leveled by the waves. The elevation of the track across the cut-off is 4,217 feet above sea level according to railroad figures; the lake is usually 10 to 15 feet lower.

A channel of open water 600 feet wide under a trestle at milepost 762 is now the only connection between Bear River bay and the main lake. As Bear River, the largest tributary of Great Salt Lake, enters at the north side of this bay, and as more water is evaporated from the main lake than from the bay, there is usually a flow of water from the bay into the lake through this passage. The water of Bear River bay has for this reason become so much fresher that lately it has frequently frozen over to considerable thickness during the winter.

The view toward Ogden and the Wasatch Mountains expands as the train proceeds. The high summit above Ogden is Observation Peak, 10,103 feet above sea level; Ben Lomond, the summit on the long, high ridge firther north, is still higher (10,900 feet). The upper shore lines of the former Lake Bomeville show distinctly as a series of elearly defined terraces on Promontory Point and also around Fremont Island. On Fremont Island only a single little point like a cap, undercut by wave action on all sides, rises above the highest water level of the old lake.

Milepost 759 is just at the west edge of the first section of the fill, the sertion that crosses Bear River bay. This eastern part of the cut-off is 8 miles long. The track skirts the south shore of Promontory Point for \(4 \frac{1}{2}\) miles and then runs out on the second section of the fill, which is over 20 miles long.

The station at Promontory Point (see sheet 15, p. 102) is maintained chiefly for purposes of railroad operation.

\section*{Promontory Point.}

Elevation 4,217 feet. Omaha 1,023 miles. Rock and gravel for building the embankment across the lake were obtained at several places along the south end of the point. The rock exposed in railroad cuts and quarries here is a black slate, which weathers rusty and brown.

Just west of Promontory Point station, on the north side of the track, is a pond cut off from the lake by the railroad embankment. At times of high water in the lake this reservoir fills by percolation through the embankment, and during the summer this water is concentrated to a brine by evaporation. The deep pink color of the brine is a phenomenon that appears in salt ponds generally when a certain concentration is reached. In the salt ponds of San Francisco Bay this color is due to a certain bacillus which lives in saturated brines and also in the heaps of salt as it is piled for drainage and shipment. Prohibitive to life as such an enviromment might be considered, strong natural brines are, in fact, inhabited by a number of minute organisms - animals as well as plants. The pink color disappears in winter or when fresh water is introduced into the pond. The railroad company has done some experimental work on preserving piles and ties by soaking them in this pond.

Beyond the pond the track follows the lake shore along the south end of Promontory Point for a mile or two, passing a minor station and group of railroad section houses called Saline.

Looking a little east of south from Promontory Point, one can see on the south shore of Great Salt Lake the town of Garfield, the concentrating mills of the Utah Copper Co., and the copper smelter of the Garfield Smelting Co. A long column of smoke may usually be seen trailing away over the mountains from the smelter stack. These plants were constructed a few years ago to treat copper ores from Bingham Canyon, a short distance to the south, in the Oquirrh Range, and the town of Garfield was established to furnish accommodations for the men employed at the mills and smelter. The two mills of the Utah Copper Co. are among the largest concentrating plants in the world and together are capable of treating over 20,000 tons of ore daily. The ore treated contains an average of about 1.5 per cent of copper in the form of sulphides.

At the semaphore marked 754.5 miles the railroad runs out on the fill across the west arm of the lake. Large excavations near by are in the "gravel" that was at first used in constructing the fill. This "gravel" is of a very unusual character. If examined closely, preferably with a magnifying glass, it is found to consist of smoothly rounded, opaque grains, not like ordinary sand grains. These are known as oolites, the word oolite meaning literally fish-egg stone or
roo stone. Each oolite is built up, onion-like, of one layer over another. These layers consist of carbonate of lime chemically deposited from solution in the lake water. There is almost no lime in the water of Great Salt Lake as a whole, as the brine seems to be too strong in other more soluble salts to retain the less soluble carbonate. Waters sweeping into the lake around its margin and the tributary river waters, however, contain a considerable amount of lime, and this on mixing with the lake water is deposited on the bottom in the form of these oolitic grains. The grains may be compared to little pearls, which in fact they resemble both in composition and structure. It has been shown that minute plants (alge or hacteria) have had much to do with the manner in which this lime is precipitated; but that is another story, too long to tell here.

A mite and a half farther west the road runs across deeper water, the track here being on a trestle, which continues for about 12 miles. The surface or deek of the trestle is ballasted with rock, so that it is not very different in appearance from the solid fill.

From the railroad the islands in Great Salt Lake come successively into view. Fremont Island has already been referred to. Antelope Island, a submerged mountain of considerable size, is south of Fromont. Stansbury Island (with twin peaks on the summit.) may be seen in the distance at the south end of the lake. Far to the south also are Carrington Island and IIat or Bird Island. North of the railroad are Gumnison and Dolphin islands and Strong Knoh, which was formerly an island but has lately been connected with the mainland by a narrow spit. A double

\section*{Midlake.}

Elevation 4,217 feet. Omaha 1,037 miles. track with station and railroad section houses has been built on the trestle out in the middle of the lake, where the water is reported to be 42 feet deep. The station is called Midlake. Between this station and Lakeside is Rambo.

Near milepost 735 the railroad reaches the west shore and passes through a cut in limestone rock, beyond which is a great cliff of blue limestone in thick beds that dip toward the southeast. These rocks are of Paleozoic age, the dark-blue to black limestones near Lakeside belonging to the Carboniferous period. (See table on p. 2.) The range lying along the west shore of Great Salt Lake is known as the Lakeside Mountains.

Lakeside (sce sheet 16, p. 156), a railroad maintenance, construction, and quarry camp, lies at the west end of the great fill across the lake (Pl. XXXIV), only a short distance from

Lakeside.
Elevation 4,216 foet. Omahe 1,047 miles. the shore. Here white dune sand which has been blown back from the beach is piled up along the tracks. It is oolitic sand like that already referred to, and should a stop happen to be made here the traveler may find interest in examining a handful of the grains. To the south great
u. S. GEOLOGICAL SURVEY

view eastward along the lucin cut-off across the west arm of great salt lake.

quarry faces expose the thick beds of dark-hlue Paleozoic limestone. To the north Strong Knob, which at the present lake level is almost an island, presents a blufl front of conspicuous white and black rock.

Salt marsh lands on both sides of the track are sometimes flooded, sometimes covered with a crust of glistening white salt, \({ }^{1}\) stretehing away to the south as far as the cye can see. A mirage can nearly always be seen on these plains, the distant mountains to the south appearing to be surrounded by water, the ghost of the greater lake Bonneville. (See pp. 97-99.) This area is a part of the Great Salt Lake Desert and is so low and so flat that only a small rise in the general level of the lake would reflood the whole area.

A water tank and section house at milepost 730 are at the end of a \(52-\mathrm{mile}\) pipe line. Drilling for fresh water on the west side of Great Salt Lake has not been successful. All the sandy stretches, both north and south of the track, are composed of oolitic grains, here mixed with some mud and heavily inerusted with salt, therefore not so uniform or so clean as those in the dunces at Lakeside.

Brown fly larve and their cast-off shells pile up along the railroad embankment when the water is high, often ereating an offensive odor. Sometimes they collect in such masses over the rails that they make the tracks slippery, actually interfering with the passage of trains.

Olney, a siding and signboard only, is situated in the midst of a bare salt-inerusted desert. Beyond it the railroad rises slightly over low gravel ridges, some of which show distinct beach terraces and gravel bars, marks of former higher lake levels. A few isolated outcrops of dark limestone project through the valley deposits. The railroad descends slightly to the level of the Great Salt Lake Desert
\({ }^{1}\) The white incrustation seen for a long distance west of Great Salt Lake consists of chemical compounds or salts that are more or less soluble in water, all of which are popularly inchuded in the term "alkali." In its strict sense that term refers only to a certain group of chemical compounds that have the power of nentralizing acids and have a corrosive action on animal and vegetable tissue. The most powerful of these are the lyes, the hydrates of sodium and potassium. The salts which incrust the desert surface are not ordinarity of this character at all. For the most part they consist chicfly, in places almost exclusively, of common salt (sodium chloride). In many places, however, they include also other readily soluble salts-Glauber's salt (sodium sulphate), washing soda (sorium carbonate), baking soda (sodium bicarbonate), and
less commonly borax. More rarely in this part of the country the soluble calcium or magnesium salts are found. However, where the soluble (sodium and potassium) carbonates occur the salts in fact partake of the character of true alkali. The carbonates of sodium and potassium, being formed ly the combination of a strong base (sodium or potassium) and a weakacill (carbonic), breakup(hydrolyze) to a certain extent in solutions, and thus there is actually liberated a small amount of free canstic alkali. The water-soluble carbonate of soda, known on accomnt of its darkening effect in soils as "blark alkali," is very destructive of vegetation. The less harminl "white alkali" consists of a mixture of the neutral soluble salts, in large part common salt, and its presence, as the name implies, is indicated by a white incrustation.
again, and the route is bounded on both sides by barren areas of white clay, or playas, \({ }^{1}\) and low dunelike or lumpy areas of clay soil.

At milepost 718 is the begimning of a straight piece of track (tangent.), 38 miles long, which extends to the junction with the old route around the north end of the lake near Lucin.

At Loy, a siding and section house only, the route is still bordered by bare mud playas on each side. A dark rocky range, the Newfound-

\section*{Loy.}

Eleration 4,221 feet. Omaha 1,066 miles. land Mountains, juts out of the flat desert ahead to the south. These mountains were formerly islands, as is shown by the traces of old shore lines high about their rock slopes. The desert here is only a little-perhaps 5 feet-above the level of the tracks on the cut-off over Great Salt Lake, and a slight rise in that lake would again cover this extensive flat.

Another railroad siding and group of section houses situated in the midst of the bare mud desert bears the name Newfoundland. Two

\section*{Newfoundland.}

Elevation 4,221 feet. Omaha 1,076 miles. very distinct benches, marking higher shore lines of old Lake Bomneville, may be seen on the front of the Newfoundland Mountains (the Rocky Hills of some of the older maps) to the south, and the upper bench was evidently cut by waves into the solid rock.

At Lemay, a pump station with section houses, a long pipe line which comes from a spring in the momitains 27 miles to the north, reaches the railroad. This line furnishes an excellent Lemay. Omaha 1,080 miles. supply of clear, fresh water along the route across the Great Salt Lake Desert. About 1903 a well was bored at Lemay to a depth of 2,340 feet. For about 1,000 feet the well penetrated desert mud like that at the surface, with intercalated layers of clear crystalline gypsum. Below this material the hole was bored in limestone and brown sandstone. This record is interesting in showing the depth of the former lake or desert deposits in this part of the valley.
> \({ }^{1}\) A playa is a shallow, flat-floored depresion, characteristic of valleys having no rugular drainage to the sea, in which storm waters collect and evaporate. It may he a shallow lake or a salt-incrusted mud flat.

> In his lescription of Lake Lahontan, Russell writes:
> "The scenery on the larger playas is perutiar and is usually desolate in the rextrme hat is not without its charm. In mosing these wastes the traveler may rido: for miles over a perfeetly level floor, with an unbroken sky line before him and not an object in sight to cast a shadow (1) the ucean-like expanse. Mirages, which may be seen every day on these hoated deserts, give strange fanciful
forms to the mountains, and sometimes transfigure them beyond recognition. A pack train crossing the desert a few miles distant may appear like some strange caravan of grotesque beasts fording a shallow lake, the shores of which advance as one rides away. The monotony of midday on the desert is thus broken by elusive forms that are ever changing and suggest a thousand fancies which divert the attention from the fatigues of the journey. The cool evenings and mornings in these arid regions, when the purple shadows of distant mountains are thrown across the plain, have a charm that is unknown beneath more humid skies, and the profound stillness of the night in these solitudes is always impressive."

Beyond Lemay the route continues through the barren playas. Beppo is a railroad siding and section house only. The view of the mountain ranges to the west, across the State line in Nevada, is characteristic of the scenery which will be displayed for several hundred miles. Ahead, somewhat to the south, is Pilot Peak (elevation 10,900 feet), at the south end of the Ombe or Pilot Range. This was a well-known landmark in the early days. One of the principal overland emigrant routes led around the south end of Great Salt Lake, then across the barren desert to the low pass south of this peak. The Western Pacific Railway follows nearly this same course. The route of transcontinental automobile travel now known as the lincoln Highway follows that railway around the south end of Great Salt Lake and then swings southwest around the Great Salt Lake Desert.

Jackson (elevation 4,241 feet), Teek (4,289 feet), and Pigeon are mere railroad sidings and section houses. The route continues through the flat, low-lying desert lands, from this point on more or less covered with scattered patches of brush. Owl Butte, an isolated peak north of the railroad, is composed of lava (rhyolite), and its slopes show jutting ledges, which are probably the erlges of lavia flows. The top is in the form of a cap. Apparently it was a little island when Lake Bomeville stood at the higher levels and was sculptured into this form by the waves. At Pigeon a spur track leads off to a gravel pit, from which material is excavated by the railroad for ballasting along the track. The gravels are ancient beach deposits, remnants of the deposits laid down around the shores of the old lake at its higher levels. Generally these gravel beaches extend out from some rocky headland, the source of the rock fragments which, worn, rounded, and sorted by the action of waves and currents, were distributed as gravel and sand along the adjacent shores. The bedding of these deposits is irregular, showing that they were laid down by shifting currents. The source of the original material at Pigeon was evidently the lava on Owl Butte.

The Lucin railroad station is somewhat beyond the old settlement, where there is a store and a post office. Here the route leaves the Great Salt Lake Desert and enters a grazing country.

\section*{Lucin, Utah.}

Elevation 4,474 feet. Population 200.* Omaha 1,103 miles. Both sheep and cattle find sustenance in the sparse grass that grows among the sage, and it is said that over half a million sheep pass Lucin twice ammally, going south to their winter range and north for the summer. Lucin is the point of departure for a stage line to Grouse Creek, a settlement 30 miles to the north. Beyond Lucin the railroad begins to climb more noticeably, and the stream beds indicate clearly that the surface or storm waters flow toward Great Salt Lake.

The actual junction of the present line with the original route of the Central Pacific around the north end of Great Salt Lake is at Umbria Junction (see sheet 17, p. 162), half a mile beyond Lucin station. Once a week a train is sent over the old route.

Between Umbria Junction and Tecoma light-colored clay and gravels in regularly bedded deposits are exposed along the railroad. These are either deposits in the waters of Lake Bonneville or later stream deposits of wash brought down by crosion from lake-bed clays and beach materials higher up. These beds show a slight tilt toward the east, indicating that they were probably left here by running water.

The Utah-Nevada State line, marked by a monument and a fancifully decorative design in set stones at the north side of the track, is passed opposite the first ranch building seen west of Great Salt Lake. To the south the State line passes over the escarpment capped by lava (basalt), the columnar jointing (see footnote on p. 121) of which may be distinguished even at this distance.

Nevada is a Spanish word meaning "snowy" or "white as snow," and the name of the State was derived from the Sierra Nevada. The State ranks sixth in size in the Union. Its length from Nevada. north to south is 484 miles, its width 321 miles, and its area \(109, \$ 21\) square miles, of which about 60 per cent has been covered by public-land surveys and approximately 21 per cent has been appropriated. National forests in Nevada cover an area of 8,683square miles, and Anaho Island, in Pyramid Lake, has been made a hird reservation. The population of Nevada, according to the latest census, was 81,875 , or about one person for each 1.4 square miles.

Nevada is one of the most important metal-mining States of the West and has yielded large quantities of gold, silver, and lead. Of late also it has become a large producer of copper.

The history of Nevada is chiefly the history of its mines. Since the discovery of the Comstock lode and other famous ore bodics, periods of activity and prosperity have alternated with periods of depression. Each discovery of high-grade ore in noteworthy quantity has been followed by rapid settlement in that locality and the estallishment of one or more towns. Exhaustion of the richer or more accessible ores or the bursting of overinflated speculative bubbles has been followed by at least local stagnation and depopulation. In 1890-1893 a sharp decline in the price of silver initiated or accompanied a period of depression in Nevada's mining and general industrial prosperity. Silver is so important a resource of the State that to a large extent even now its prosperity depends upon the market for that metal. Of late years, however, an increased production of gold, copper, and recently of platinum has accompanied a gradual and, it is hoped, substantial industrial progress. Permanent towns have grown up and agriculture and related pursuits are becoming firmly established.

The mining districts in the State number about 200 and are widely distributed over its area. Almost every one of the larger mountain ranges contains some ore. In the following pages emphasis will be

Omaha Nebraska, are shown every io meires
the raironis are spaced I mile apart

()TERLANJ) ROUTE

Fromi Gnadra, Nebranka, to Sin Fratu-iveo, C'ulitorna

AEERE, WTL SMITH DIRE TUR

laid on the record and the development of mining districts adjacent or tributary to the railroad. More complete accoments of most of the districts may be found in the publications of the United States Geological Survey.

The geology of Nevada is that typical of the Great Basin, in which the two prevalent topographic elements are the basin ranges and the intervening valley plains. In the mountains probably the most conspicuous rocks are the Tertiary lavas, although a full series of sedimentary beds is also present, as well as great masses of intrusive igneous rocks of various types. The rocks may be briefly mentioned in the order of age. (See table on p. 2.) The pre-Cambrian basal or foundation rocks, on which the younger sedimentary rocks and lavas rest, are visible in a few places. East of a line passing somewhat east of Winnemucca through Austin to a point a little west of Tonopah Paleozoic strata are the predominating sedimentary rocks in the mountain ranges, which include few or no Mesozoic beds. The enormous thickness of the Palcozoic section at Eureka (almost 30,000 feet) suggests that the shore line of the Paleozoic sea was somewhere near this place. This is further indicated by the fact that west of the line mentioned the Paleozoic rocks disappear and are succeeded by a thick series of Triassic and Jurassic sediments. During the Paleozoic era western Nevada was apparently a land from which sediments were washed into a sea on the east. In Mesozoic time the situation seems to have been reversed. The Jurassic and Triassic sediments were apparently derived from a land area of uplifted Paleozoic strata in the eastern part of the State. The Triassic limestone, slate, and sandstone and the associated lavas of the Humboldt Range have an estimated thickness of 10,000 feet. Somewhat similar Jurassic rocks add several thousand feet more to the record of deposition in this region during Mesozoic time. No Cretaceous sediments have been found in Nevada, and it is therefore supposed that the Great Basin during that period was a land area.

Large and small bodies of granular intrusive igneous rocks, chiefly such as may be called granite (including quartz monzonite, granodiorite, and similar rocks), extend from the great masses in the Sierrab Nevada to the castern part of the State or beyond. All these bodies may be more or less related; they appear to be younger tham most of the Jurassic sediments but older than the Tertiary rocks and are probably of Cretaccous age. The Tertiary lavas (rhyolite, andesite, and basalt) are widely distributed and cover large areas, some ranges being entirely made up of them. Vast areas in the valleys are covered with the gravelly deposits of streams, with material laid down in lakes, or with the ash or pumice ejected with the lava during volcanic eruptions.

The movements by which the mountains and valleys have been formed probably occurred in different periods, but it is evident that most of them broke and shifted the sheets of Tertiary lava, and were
therefore subsequent to these lava flows in date. The present ranges in the Great Basin are therefore young compared with mountains in general. They are supposed to have been uplifted by movements that lasted at least through a part of Tertiary time and perhaps have extended to the present day. The earth breaks or faults along which the mountain blocks were upheaved are still recognizable at many places in the topographic form of the mountains.

As a supply or trading point Lucin is now largely superseded by Tecoma, a considerable settlement a few miles farther west. Of the mines in the Lucin district, \({ }^{1}\) south of Tecoma, only

\section*{Tecoma, Nev.}

Elevation 4,807 feet. Omaha 1,114 miles. the Copper Mountain mine has lately shipped much ore. This mine is connected with the railroad by a 6 -mile spur track and an aerial (wire cable) tramway. Stock raising is now the principal industry in this region, but north of the railroad there are some large land holdings which are to be subdivided and utilized under a private irrigation project.

After ascending the drainage channel above Lucin, the railroad passes out into a broader and more open valley through which the track heads straightaway toward Montello. In this valley the railroad reaches the elevation of the uppermost water level of the former Lake Bonneville, but traces of the old lake shores are not readily discerned.

Montello is a railroad town and the first freight terminal west of Ogden. The characteristic Nevada or Great Basin scenery is well displayed here, stecp mountain ranges with rugged

Montello.
Elevation 4,S78 feet. Population 355.* Omaha 1,120 miles.
declivities contrasting sharply with the broad, gentle slopes of rock waste and gravel from which they project. The railroad winds in and out among such ranges all the way across Nevada, generally finding low passes through them or going around the end of the ranges.

Leaving Montello the road begins the steeper climb by which it passes over the divide and out of the Bonneville Basin. The highest
\({ }^{1}\) The Lucin mining district is in the Ombe or Pilot Range, a few miles south of Teroma. Ore was discovered in the district about 1869 , and there was a considerable output of silver and lead until about 1876, after which the district was nearly deserted. The increasing demand for copper in recent years has encouraged the development of the copper deposits in the Lucin district, and the value of the copper produced there from 1906 to 1912, inclusive, was approximately \(\$ 1,700,000\).

The sedimentary rocks of the district are chicfly of Carboniferous age. They have been invaled by igneous rocks of various kinds, the larger bodies of which
consist of a coarsely porphyritic rock of granitic character (quartz monzonite porphyry). The black rocks seen from the railroad at the north end of the range are basaltic lavas.
The ore bodies, which embrace copper deposits and lead-silver deposits, have resulted from the replacement of limestone adjacent to faults and fissures. The copper ores are oxidized, no sulphides having yet been reached. The leadsilver ores are also oxidized. Wulfenite, the yellow molybdate of lead, is abundant, and the district is probably best known to mineralogists for the beautiful crystalline specimens of this mineral that it has yielded.
water level of old Lake Bonneville lay somewhere near Montello, at an elevation of about 5,000 feet, probably just above the town, but no distinet traces of the old water line can be seen from the train. Looking back or down across the valley (southward), the traveler may see Pilot Peak, the highest point at the south end of the Pilot Ramge. Banvard (elevation, 4,976 feet), Noble (5, 117 feet), Lllin (5,256 feet), Tioga (5,597 feet), and Omar (5,610 feet), pasced in the order named, are mere sidetracks or minor stations.

The surface material of the valley is mostly a lightecolored clay mingled with pebbles and fragments of rock. The fragments include many of light-gray limestone, evidently representing rock that is exposed in the adjacent mountains. The valley is covered with a fairly uniform growth of brush, and the sparse grass which in less arid regions would hardly be noticed affords good grazing for stock. The mountains appear smooth and rounded as seen from a distance and are in part covered with a scanty growth of cedars.

Just beyond Tioga, a sidetrack and signboard near milepost 653, the railroad reaches the head of the open ralley. Bedrock projects in many places, and ridges of rock extend down from the mountain front to the north toward the railroad. These are limestones and quartzites of Carboniferous age. Similar rocks show as rugged edges on the more distant mountains to the south. In the reports of the Fortieth Parallel Survey the pass through which the railroad climbs was named Toano Pass, and the mountains to the south were calted the Gosiute Range and those to the north the Tomo Mountains. A large part of the high country for a long distance bevond Toano Pass is made up of Carboniferous sediments. Phosphate rock is reported to have been found in these rocks in the same relative position as in the great phosphate fields of southern Idaho and vicinity, but in Nevada the beds, so far as known, are too thin to be of commercial value.

From the upper end of Toano Pass, near milepost 649, may be seen in the valleys on both sides beds that are conspicuously exposed as chalky-white cliffs or as bare white patches on the rolling plains or on low ridges. These beds are composed mainly of friable gray, white, and drab sandstone and marly limestone, at many places containing a great deal of volcanic material, chiofly the tuff or ash that accompanied lava (rhyolitic) eruptions. These rocks belong to the Humboldt formation \({ }^{1}\) and cover large areas in this part of Nerada.

\footnotetext{
\({ }^{1}\) The Humboldt formation was described by Clarence King in 1878 as the deposit of a great lake which he thought had occupied most of the territory from the Wasatch Mountains in Utah to the Sierra Nevada, in Pliocene time. He named this hypothetical body of water Shoshone Lake, and these sediments. which he supposed had been laid down
}
in its water, he called the "Ilumboldt series." During recent years little attention has been given to the further study of this formation, but geologists of the present day are much inclined to doubt the existence of the extensive lake thus conjectured, as well as the necessity for assuming that these beds as a whole were lake deposits.

At Cobre (pronouncel co'bray, Spanish for copper) is the junction with the Nevada Northern Railroad, which since 1906

Cobre.
Elovation 5,922 feet. Omaha 1,138 miles. has given access to the Ely or Robinson copper districts,' 140 miles to the south, and a number of other less well-known distriets, including Cherry Creek and Egan Canyon. \({ }^{2}\)

West of Cobre the railroad crosses a number of scarcely perceptible divides. The old town of Toano, opposite milepost 643, is now represented only by a few fallen and deserted stone buildings. These were built from blucks cut from the sandstone of the Humboldt for-
\({ }^{1}\) The first mining locations in the vicinity of Ely were made in 1867, three years after the organization of the Eureka mining district, in the same year in which bonamza silver ores were discovered in the White Pine district, 60 miles to the west. Early operations disclosed a few deposits of lead-bearing ores carrying precious metals to the value of \(\$ 10\) to \(\$ 10\) a ton. Octasionally small bonanzas were found, and shallow deposits of rich copper ore were mined.
The present copper industry of the district is the outgrowth of explorations that began about 1901. The aggregate quantity of low-grade sulphide ore developed is perlapys 80 million tons, in which the mean copper content is a little over \(1 \frac{1}{2}\) per cent. In 1906 extensive reduction works were built at MeGill, on the east side of Steptue Valley, about 25 miles from the mines.

The sedimentary rocks of the district, comprising limestones, quartzites, and shales, range in age from Ordovician to Pemsylvanian. They have been disturbed by folding and especially by faulting and have been invaded by masses of igncous rocks (monzonite porphyry).
The ore, like the greater part of that at Binglam, Utah, consists of monzonite porphyry, greatly altered (metamorphensed) as a result of the igneous intrusions, carrying disseminated grains of pyrite and chalcopyrite, and varying amounts of chalcocite. Masses of porphyry which, through metamorphism, had been almost uniformly charged with grains of pyrite and chalcopyrite became
subject to crosion and oxidation. As the rock was gradually worn down, surface waters attacking the metallic sulphides and charged with copper derived from them soaked downward into the rock and deposited the dissolved copper by chemical reaction with the pyrite and chalcopyrite in the rock. In this way a part of the rock was gradually converted into ore ly addition of the copper sulphide. Superficial examination of ore samples shows a white to gray rock specked through and through with a black mincral, which is the rich copper sulphide chalrorite. On close inspection it is found that this mineral occurs mainly as films or coatings on grains of the paleyellow iron mineral pyrite or the deeper yellow copper-irou sulphide chalcopyrite. The oxidized capping or overburden has an average thickness of about 100 feet. The underlying ore blankets are from 15 to 500 feet thick. Up to the present time comparatively little underground mining has been done, though caving methods were employed in the Veteran mine. The Ruth ore body, estimated to contain 8 to 10 million tons of ore carrying over 40 pounds of copper to the ton, may be mined in a similar way. Where the overburden is shallow the ore is mined loy steam shovels, and between 1908 and January, 1914, nearly 12 million tons of ore averaging about 38 pounds of copper to the ton had been produced in this way, and in addition some 20 million tons of overburden had been removed.
\({ }^{2}\) On the west side of Steptoe Valley, 93 miles south of Cobre, are the Cherry Creek and Fgan Canyon mines, in a low pass
mation (Pliocenc) near by. Valley Pass (elevation (i,0 \(\mathrm{m}_{2}\) feet) is the highest of the low divides just mentioned. It is marked by a railroad station and a water tank. The mountains across the rolling valley to the north, grassy on top but more or less thickly covered with scrubby cedar trees on their lower slopes, are comporsed of Paleozoic sandstone, shale, and limestone.

Beyond Valley Pass the drainage chammels lead off to the morthwest toward Thousand Springs Valley. The broad brush-covered plains adjacent to the railroad have little distinctive character geologically or otherwise. They are presumably underlain by the volranic: ash beds (tuffs) and other beds of the Humboldt formation, which are trenched by shallow gullies. Cuts along the railroad show streamdeposited gravels.

Within the 30 miles west of milepost 6:37 the train passes I aras (elevation 6,108 feet), Pequop (6,143 feet), Fenelon (\(6,15: 3\) feet), Holborn (6,103 feet), Anthony (6,124 feet), Moor (6,1666 fect), ('ediar (5,969 feet), and Kaw (5,831 feet) - merely sidetracks, section houses, or water tanks maintained chiefly for the use of the railroad. For a long distance the coarse white tuffaceous sandstones of the Humboidt formation are the principal rocks seen near the railroad. .Just beyond Pequop, however, between mileposts 630 and 629 , are conglomeratic strata interlayered with evenly bedded clays or clay shales of a distinct light-greenish color, which are believed to be of older Tertiary age (Eocene, Green River formation). Faults displacing the clays and conglomerate are visible in the railroad cuts but possibly would not ordinarily be noticed from the train.

Between Anthony and Moor an extensive view may be had to the south and southeast over the north end of Independence Valley, the larger part of which lies beyond the range of vision. This valley constitutes another of the distinct drainage units of which the Great Basim is composed. The railroad continues to ascend graduatly, skirting the slopes at the north edge of the valley. For several miles near the summit of this part of the route the road passes through groves of cedars, such as are frequently observed from a distance on the flanks of desert mountain ranges.

\footnotetext{
that was used by the Pony Express and Overland Stage in pioneer days. Gold was discovered here in 1861, and between 1872 and 1882 the district supported a population of about 3,000 . The total production amounted to several millon dollars, but at present comparatively little work is in progress. Gold ores and silver-lead ores occur here in sedimentary rocks, principally in quartzite.
}

In the fositute mining district, which lies 20 miles south of 'herry 'reek, it the Egan Range, silwer-lead ores have recently been mined from veins oceuring in limestone. The Spruce Mountain. Hunter, Schellbourne, Duck ('reek, and Ward mining districts, in which work has been more or less active during recent years, arealso tributary to the Nevada Northern Railroad.

It Moor the divide between the drainage of Independence Valley and that of Humboldt River is reached, and the traveler enters

\section*{Moor.}

Elevation 6,166 feet. Omaha 1,166 miles. the area tributary to the ancient Lake Lahontan, an extensive body of water that formerly spread out through most of the lower valleys in northwestern Nevada. (See p. 172.)
From the summit of Moor the train makes a long westward descent, at first down a heary grade between Moor and Wells. Minor stations along the way are Cedar and Kaw. A broad valley extends off toward the north, the railroad skirting its southern side. Tulasco Peak, the prominent pointed summit in the range across this valley, is formed of limestone and quartzite of Carboniferous age, with lava (rhyolite) at its base and beds of Pliocene tuff in the valley.

Wells, formerly a more important settlement and trading center than it is now, was named from a group of springs called Ifumboldt Wells, an objective point along the branch of the old

Wells.
Elevation 5,631 feet. Population 598.* Omaha 1,175 miles. overland emigrant trail, which here comes from the south into the route followed by the Southern Pacific. From Great Salt Lake to Wells the trail followed in general the route which has been taken by the Westem Pacific Railway. From Wells to a point a little beyond Winnemucea both the Southern Pacific and the Western Pacific run in nearly parallel lines down the valley of Humboldt River, beyond which they diverge to separate passes across the Sierra Nevada.

The springs at Wells are reported to be from 30 to 150 in number and range in size from a few inches to 3 or 4 rods across. They are inconspicuous little pools scattered about in a grassy meadow just north of the railroad, a short distance west of the town. The flow is variable; it reaches a maximum about October, but during a large part of the year there is no overflow at all. This variability with the season indicates that the springs may originate in the underflow drainage in the valley, rather than from some deeper-seated source, which probably would not be so subject to seasonal influeners. These wells have been called the head of Humboldt River, but that stream has longer branches, which enter the valley below Wells.

Wells is still the center of an extensive cattle and sheep industry, which has now largely replaced the mining of earlier days. A large private irrigation project is being carried out in the valley beyond the high mountains to the north. Near Wells, Humboldt River, Willow Creek, Trout Creek, and Meadow Creek supply water for the irrigation of 1,900 acres, or about 3 square miles of land, which is deroted principally to growing winter foed for stock, although, arcording to reports, barley, oats, potatoes, and cabbage are also raised. Clover Valley, at the foot of the Ruby or East Humboldt Range, south of Wells, is a good agricultural and stock-raising valley

that was formerly dependent for its tramsportation farilitios on Wells but is now served by the Western Pacific Railway.

Humboldt River, which was so named by Frémont, amd which is one of the largest river systems in Xevada, hemds cutirely within the desert ranges of the centrall (ireat Basin. It rises on bla castern border of Nerada and flows westward for atome 200 miles. Noar some of the higher mountains it recerves comsiderathle water, but it dwindles downstream and finally disappears. It momers the basin formerly flooded by the waters of Lake Lahomtan anar the present town of Golconda and from that point continues its rourco through Lake Lahontan beds for nearly 100 miles to Hmmbode Lake. In the dry season the river water gets, no farther than ILmmbold Lake, but during the winter this lake commonly overfows, the waters passing on to the Carson Sink, where they are evaporated. Throughom its course it is almost if not quite destitute of native trees along its channel. In its upper course Humboldt River receives a momber of tributaries, the largest of these being Repse River. which enters it from the south. During the summer and fall several of thesestreams, including Reese River, commonly dry up before they rach the main channel.

Just below Wells the train runs along the margin of a strip of meadowland and then passes into a narrower portion of the valley hemmed in be low bluffs on each side. These bluffes and the cuts along the railroad show bedded deposits of white and greenish clays or sand, which are classed with the Tertiary Humbold formation. Beyond the narrows lies a broader ralley.

As the valley opens out the traveler may see to the south a pranorama of the Ruby or East Humboldt Range, the highest and most rugged mountain mass in Nevada. The name Ruly Mountains, or Ruby Range, is locally accepted in preference to East Itumboldt and seems to have priority. Old settlers describe the finding of "rubies" and "ruby sand" in the gravels of some of the streams coming from these mountains. Specimens of these "rubies" are in fact red garnet, a rather common mineral developed in re ak under the influence of the heat accompanying igneons intrusion.

At first only the north end of the range, around which the railroad passes, is seen, but farther west the western flamk and the lofty summits come into riew. A number of these peaks attain a height of 11,000 or 12,000 feet, and snow lingers along the crest of the range late into the spring and comes early in the fall. Owing to their height these rugged slopes receive a larger ramfall than the surrounding country and supply water to the adjacent valleys, which contain some of the most productive agricultural regions in the State. On the east slope of the Ruby Range the waters quickly disappear in the beds of the narrow canyons but break out again lower down
in cold springs that feed Ruby and Franklin lakes. On the west side the descent is more gentle and the waters gather in the South Fork of the Humboldt. The crest of the Ruby Range is included in the Humboldt National Forest.

The Ruby Range is a typical Great Basin mountain ridge. It rises abruptly on all sides from flat valley plains or low, even slopes of rock detritus or "wash." The northern part of the range is granite, formerly considered Archean but now known to be of postJurassic, probably Cretaceous age. (See table on p. 2.) Flowing streams from the Ruby Range reach the railroad in places, and hay meadows and grainfields have been established wherever the water supply is sufficient to permit irrigation. Wild grasses are cut for hay along the flood plain in the main Humboldt Valley, and numerous haystacks are usually visible from the railroad. Beyond Nardi (-seshect 18, p. 168) a few ranches appear along the Humboldt, which is joined near Deeth by Marys River, from the north. It is said that 7,000 acres are irrigated in this vicinity, but on account of the scanty water supply only native grasses are grown, which are sometimes cut for hay and sometimes used for grazing in fall and winter.

The main settled areas in this general region are Starr and Ruby vallers, south of the railroad, at the foot of the Ruby Range. Starr Valley contains some 3,700 acres of irrigated lands, for which Herders, Starr, Ackler, Deering, and Boulder creeks furnish an ample Water supply until about the middle of July each year. Nearly onefourth of this valley is "sell irrigating" through seepage from higher irrigated lands. These "self-irrigating" lands are usually left in mative grass, which is cut for hay or used for pasture.

Firom Deeth, which is a trading center for Starr and Ruby valleys, a stage line runs north 52 miles to Charleston (Cornwall Basin), whence ore and concentrates (gold and copper) are shipped

Deeth.
Elavat ism 5.3.31 feet. P'opulation \(2(\mathrm{H})^{*} *\) ()maha 1,193 miles. through this station. Jarbidge, a gold and silver mining camp in the extreme northern part of the State, formerly had its outlet through Deeth but now receives mail and supplies from Twin Falls, Idaho, by way of the Oregon Short Line.

West of Deetli the view of the Ruby Range broadens as the railroad bends sonthward along the west front of these mountains and at the same time gradually leaves them. The range from this viewpoint shows a high and rugged crest with approximate north-south trend, notched near the north end by a low pass. The highest summits lie north of the pass, among them Mount Bonpland, about 11,300 feet in clevation, and Clover Peak, just south of it, probably higher.

Natches and Rasid are unimportant stations between Deeth and Halleck. The Humboldt appears as a meandering stream close at hand south of the railroad, bordered by narrow meadows of wild grass,
behind which are low terraces or ridges. These tematere have evidently been formed by the river at, an earlier period of its history and generally have a surface covering of gravel.

Halleck is a shipping point for cattle and sheep. The station received its name from old ('amp) Hatlerek, a fort and

\section*{Halleck.}

Elevation \(5,2: 32\) feet. Population 117.* Omaha 1,206 miles. military reservation of pionerr datss, elose moder the mountain front, about \(1 \underline{2}\) miles away, just south of the pass near the north end of tha range. Siage lines pun from Halleck to several places on the noth and south.
Elburz, a water tank, sidetrack, and section honse. is just abovo the mouth of North Fork, the principal tributary of the llmmondt. from the north. The land watered by the North Fork

\section*{Elburz.}

Elevation 5,204 feet. Omaha 1,209 miles. and its tributaries is divided into an upper and al lown valley by a range of mountains through which the strean flows midway in its comrse. Thour t, 5!n ancore of land is irrigated in the upper valley of the North Fork and 1.200 to 1,500 acres in the lower valley. Hay is the moly crop rabised.
dust below the North Fork the Humboldt Valley narrows (o) () ino Canyon. For a distance of about 50 miles, extending unaly to Beorwawe, the strip of irrigable land along the river is rather namow-in fatet, in some platers there is none. The meadow land is ned fon hay or pasture.

In Osino Canyon the railroad passes through three funnels and crosses the river several times. The walls of the canyon comsist of la wa rock, which, although light colored when freshly hroken, is watherstained to dark or rusty tints.

West of Osino Canyon the valley is broader, and near Elko dultivated fields and ranches come in to view. The valley here extendefrom the foothills of the Elko Range on the southeast to the low bemethlike spurs of the River Range on the northwest. These spurs slope of gently toward the middle of the valley and are composed almost entirely of volcanic ash, gencrally of white color, containing fragments of lava. These beds belong to the Humboldt formation (Pliocene). Underneath them are steeply tiltedstrata which contain beds of impure coal and are supposed to be of Eocene are.

The origin of the name of Elko, the seat of Elko Countr, is not certain, for according to some it is an Indian word and areording to others it was given on aceount of the abmandance of

\section*{Elko.}

Elevation 5,061 feet. Population 1,677.* Omaha 1,226 miles. elk in this vicinity. I camp site near some hot springs \(1 \frac{1}{2}\) miles west of the town made this plate a station on the old emigrant route, but the present town originated with the buidding of the railroad in 1868. The older part of the town, through which the two railroads now pass, is built on the river flood plain, but a more recent extension of the residence portion may be seen on a terrace north of the river.

The main industries of this locality are stock raising and ranching. A stage line runs from Elko to Tuscarora,' a mining camp 50 miles to the north.

Indians are usually seen about Elko, Lovelock, Reno, and at other stations along the route. Several Indian reservations lie wholly or partly in Nerada, and Indian sehools are maintained at Carson and ncar Fallon. The Indian population of Nevada, about 5,000, consists of Piutes, Shoshones, and the remnants of other tribes.

For many years there has been much interest in the possibility of finding oil in some of the Tertiary shales a few miles south and east of Elko. Several wells have been drilled in this vicinity, but oil has not been found in commercial quantity. Some oil appears to be dissminated through these shales, but it is questionable whether they contain any oil pools. Similar shales in this country and abroad have been made to yield oil by distillation, and this industry might under favorable conditions be profitable here. Oil-bearing shales of Tertiary age occur in other parts of the country, as in the Book Cliffs of Colorado and Utah.

Sandstone from the Tertiary beds near Elko has been used as a building stone, and there is a granite quarry some 30 miles to the nerth.

A mile and a half west of Elko, south of the railroad and across the river channel, is a group of buildings, including a hotel and bath houses, that mark the position of the hot springs above mentioned. The main group of springs is well up on the lower slope, at the upper edge of a terrace near the foot of the steep mountain front. Others issue lower down, near the river channel. These springs are probably related to the zone of late faulting by which this mountain hock has been uplifted. Waters derived from great depth may owe their heat to the higher temperatures generally found with increase in depth, to the fact that they have passed through or near some mass of intruded igneous rock, or to direct voleanie action. Faults along which there has been comparatively recent movement produce openings that allow such waters to reach the surface. Hot springs are found in many parts of the Great Basin.

\footnotetext{
\({ }^{1}\) Plarer gold was fonnd at 'Tuscarora in 1867 and rich silver soins wepe discovered several years later. In the seventies and eightios a number of silver mines were opened, and for several years a large produrtion was maintained. Most of the ore was milled at Tuscarora, and only very high grade ore was shipped to smetters. The production of the distriet, chiefly in silver, is estimated to have been between \(\$ 25,000,000\) and \(\$ 40,000,000\), most of which was obtained between 1872 and 1886. In
}
recent years most of the mines have been closed.

Other camps of this general region are Bullion aud Lone Mountain. Bullion, where the mining of silver and copper ores began 40 years or more ago, became inactive when the price of silver fell, but in 1911 mining was resumed, and diring the early part of 1914 ore was hauled by motor trucks to Palisade. Lone Mountain, 28 miles north of Elko, shipped in 1913-14 some ore yielding ropper and silver.

West of Elko distinct river terraces show on the south side of the river. The Southern Pacific follows the upper elge of the meadow north of the river; the Western Pacifie keeps "loser to the stremm.

Arenel (elevation 5,021 feet), Moleen (4,982 feet), Tonka (4,958 feet), and Vivian (4,918 feet) are sidings or mimportant stations. After passing Moleen (between mileposts 545 and 54t) the train runs southwestward down the narrowing valley, passing chose to cliffs of massive blue limestone. The railroal here is approximately parallel with the trend or strike of the beds. It the entranee fo Molem Canyon the track turns sharply to the northwest and within the next mile or two passes a most interesting exposure of Carboniferous limestones and quartzites. The limestone is about 2,000 feet thick, although not all the beds are exposed in continuous section. The quartzite underlying the limestone is in beds which stand nearly vertical. The river here makes a sharp bend to the north, rounds a ridge of the quartzite, and returns on an almost paraltel course on the other side. The railroad passes through this ridge in a tumel. Beneath the quartzite on the south side of the riser lie slaty and heary blue limestones, inclined \(45^{\circ}\) or \(50^{\circ} \mathrm{E}\)., which extend along the south side of the ralley as far west as Carlin. One of the shaly beds near the top of these lower limestone beds contains a little impure coal.

Beyond Tonka there is a tumnel and the Southern Pacific and Western Pacific tracks wind down the narrow canyon together. The valley again broadens as Carlin is approached.

Just before reaching Carlin station the train passes an icing plant where the ice boxes of refrigerator cars are replenished in summer. Some of the ice thus used is cut near by, in rats in

\section*{Carlin.}

Eleration 4,898 feet. Population 423.* Omaha 1,248 miles. which river water is allowed to freeze in winter, and some is shipped from the Sierra Nevada. Carlin is a railroad division point with shops and engine houses. There are some ranches in the vicinity, and several mining camps along the east slope of the Cortez Range north of Humboldt River and west of Carlin. None of the mines, however, is extensively developed or has produced more than a few tons of ore.

The valley below Carlin is narrow and is bordered on the south by rounded, indistinctly terraced hills, passing into a low rolling country to the north. Beyond Tyrol (a sidetrack, eleration 4,876 feet) the valley becomes still narrower, and rusty-brown ledges of lava appear on both sides. This is the upper end of Palisade Canyon (Pl. XXXV, p. 153), which within a short distance contracts until there is little room for more than the river and the railroads, hemmed in by the lava cliffs. Parts of the canyon wall show that the lava consists of a number of flows, indicating eruption at several distinct times.

From the small town of Palisade the narrow-gage Eureka \& Palisade Railroad runs to Eureka, \({ }^{1}\) one of the most famous of the old mining camps of Nevada, 80 miles to the south.

Palisade.
Elevation 4,44 feet. I'olulation 242.* ()mana 1,257 miles. The narrow-gage line goes up Pine Creek, the mouth of which is passed just beyond the tunnel at Palisade. Pine Creek valley trends due north, and irrigated lands lie along it for 30 to 35 miles.
Below Palisade the route continues down the canyon, which is wider and bounded by less steep walls than cast of this town. The lavas, which all look much alike in general aspect, are chiefly basalt
\({ }^{1}\) The first claims in the Eureka camp were located in 1864, but it was not until 1869 that the Eureka mine was developed on Ruby Hill. From that time until the early eighties this was the most active mining camp in Nevada and had a population of about 6,000 . Between 1869 and \(18 \times 3\) the district yielded \(\$ 60,000,000\) in bullion, about one-third gold and twothirds silver, and about 225,000 short tons of lead. Aiter 1878 the production de"lined. The lead ores constituted the main source of gold and silver until 1910, since when the greater part of the precious metals has been derived from milling ore containing little or no leard.

The Eureka district comprises a rough, almost completely isolated mountain mass, and it is doubtiul if within the Creat Basin province there can be found any region of equally restricted area surpassing it in its exposures of Paleozoic formations, especially those of the lower and middle Paleozoic systems. The sedimentary formations represent all ages from Lower C'ambrian to Pennsylvanian (sce table on p.2) and have a total thickness of 30,000 feet.

In post-Jurassic time the strata in this district, as elsewhere in Nevada, were crumpled into a series of iolds, some of them with very steep sides. The folding was followed by intense faulting. The more profound faults had a general northerly trend, and there were branches or connecting faults of northwesterly trend. Next came a long period of crosion. Tertiary time was marked by great volcanic activity, lavas (andesite,
rhyolite, and hasalt) breaking up to the surface along certain of the larger faults.

The Ruby Hill ore deposits were found in a roughly \(V\)-shaped mass of shattered limestone between the main Ruby Hill fault and a branch fault which for the most part followed the contact of the limestone with quartzite. The shapes of some of the ore bodies suggest that they were formed by replacement along fractures, but as a whole they are very irregular. The minerals originally deposited in the limestone were pyrite, arsenopyrite. galena, and zinc blende, with minor amounts of molybdenite and other minerals, but the bulk of the ore mined was oxidized nearly down to ground-water level. which ranged from 600 to 1,100 feet below the surface. One of the principal kinds of ore, known as "red carbonate." was composed of a hydrous iron oxide mixed with sulphate and carbonate of lead and inclosing residual lumps of galena. Most of it carried gold and silver to the amount of \(\$ 25\) to \(\$ 50\) of each to the ton. In some of the ore, however, the gold was worth much more than the silver.

Several of the ore bodies in Prospect Mountain contained a large amount of quartz and a relatively larger proportion of gold to silver, with less lead. Some contained bismuth and tellurium.

According to J. S. C'urtis, who studied the deposits in 1881 and 1882, the ores were deposited by hot volcanic waters which ascended along the fissures after the rlyyolite eruptions. Curtis assumed that these waters had leached the metals from some deep-seated rock.

Scale \(\frac{100.000}{}\)
Aporoximately 8 miles to 1 in 1
\(\qquad\) \(5 \quad 10\) 10
10 5 10 25

Contour interral 200 feet
ELEVATION'S IN FEET ABOVE MEAN SEA LEVEL
The distances from Omaha. Nebraska are sincum elth
The crossties on the railroacis are spaced 1 mile apart
(iEOLOHilC AND TOHOGRAPHIC' MAP
OTERLANI) ROETE
From Onaha, Nebra*kit, to sim Franci-co, Ialiformat

UNITEL ぶTATEA GEOLOGICAL GURVES

and andesite. Not far beyond Palisade the southern Parife and Western Pacifie tracks aross, but both lines still follow llumbodd River closely.

Gerald is a station just east of Barth.
Barth (see sheet 19, p. 170) is a sildetrack and shipping atation near
 across the river there is and extemeno depent of ifon

Barth.
Omaha 1,262 miles. ore, which has been dereloped for mex as flax in tho smelters in Utah. From 100 10 300 toms of iron ore has been shipped daily from this plater for a momber of sears, the total shipments being more than 250,000 tons. Besides tho iron mine there are in the vicinity at least two othor minse, the Onomdaga and the Zenoli, about a mile south of Barth, which have pooduced \(\$ 200,000\) in silver from veins in andesite. 'Therores in addition to silver carry lead and copper.

About 23 miles west of Barth the canyon opens into a broat valles with terraced floor. Harney and Cluro are stations in a rontewhat mopromising looking stretch of country, with harl, white, dilyey soil, deeply cut by gullies.

The old settlement at Beowawe (be-o-wah'wo), which maty ho reon from the railroad, stands south of the station in a grouf of tress that is surrounded by cultivated land. The mame is said Beowawe. to be an Indian word meaning gate and was given
Elevation 4,695 feet. Population 155.* Omaha 1,274 miles. to this place because of the peculiar shape of the hills near by, which present the effect of an open gateway up the valley to the canyon beyond. The settlement at the railroad is comparatively modern. It contains the power pant of the Buckhorn Mines Co., from which a transmission line goes to tho company's mine and mill, about 35 miles to the southeast. The mine was opened about 1908 and is reported to be working a large body of low-grade gold-silver ore in Tertiary lava. Concentrates from the Buckhom (Mill Canyon) district are shipped by way of Palisade. but some ore from the Tenabo and Cortez tistricts, somth of Benwawr, is shipped from this station. It is reported that 6,780 acres are under irrigation near Beowawe. The land is used for growing alfalfa and native hay and for pasture.

Leaving behind Beowawe, the railroad swings to the north. Arrosis Whirlwind Valley to the south may be seen a white line, or terrace, against the distant mountam side. This is a hot-epring deposit and,

\footnotetext{
\({ }^{1}\) This deposit of iron ore is mentioned in one of the reports of the Fortieth Parallel Survey. The ore is massive hematite, carrying from 60 to almost 70 per cent of iron. It is of high quality, its content of phosphorus, though above the

Bessemer limit, being murh less than that of the Alabama iron ores. The ore body, a mass about 200 inet in diametor and about so foet deejr or thick, has been described as a replacement deposil in andesite.
}
like so many others in Nevada, is situated just below the steeper part of a mountain front. Here, as elsewhere, the spring has probably risen along the line of the fault or displacement which blocked out the mountains from the valley.

Labloga, Farrel (elevation 4,626 feet), Mosel (4,583 feet), Argenta (4,553 feet), and Rosney are minor stations between Beowawe and Battle Mountain. The railroad passes around the north end of a broad lava plateau, and similar uplands are to be seen far across the valley to the north. As the train skirts the northern foothills of the plateau, the dark lava (basalt) may be seen close at hand. Beyond Argenta the train runs out into one of the most extensive valley areas along the Humboldt, the route traversing a broad expanse of plains far south of the main river chamnel.

The town of Battle Mountain was named after the mountain to the southwest, where in the early sisties a hand of gold seekers

Battle Mountain.
Elevation 4,512 feet. Population \(878 . *\) Omaha 1,307 miles. attacked by Indians fortified themselves just south of the prominent eastern ridge. Antler Peak is the highest point on Battle Mountain visible from the train. The town is a distributing and shipping center for a number of well-known mining districts, the principal among which are the Austin \({ }^{1}\) and Reese River districts. It is the northern terminal of the narrow-grage Nevada Central Railroad, which runs south 93 miles to the old town of Austin, the seat of Lander County. Probably more than \(\$ 50,000,000\) worth of silver has been taken from
\({ }^{1}\) Austin has a population of about 1,000 and supplies an extensive grain and stock ranching territory along Reese River and in the Smoky Valley. It is the starting point for a number of stage lines into central Nevada.

The discovery of ore near Austin is said to date from May 2, 1862, when William Takcott, one of the riders of the Pony Express, on his regular trip to Virginia (ity picked "p a piece of the rock along his route and had it assayed. On his return he located the Pony claim. Eight days later the Reese mining district was organizerl, and the fame of Lander and Union hills soon l,rought thousands of prospectors to the (amp).

The ore about Austin is in narrow veins in granite (a porphyritic monzonite). The veins consist of quartz and rhodochrosite through which the metallic minerals (tetrahedrite, pyrargyrite, proustite, stephanite, polylbasite, galena, sphal-
erite, pyrite, and chalcopyrite) are distributed. The first five minerals named are rich ores of silver containing also antimony or arsenic and ropper with sulphur; galena, sphalerite, and chalcopyrite are ores of lead, zinc, and copper, respectively. The veins run northwest and dip \(15^{\circ}\) to \(45^{\circ} \mathrm{NE}\). They are closely spaced, and several may occur in the breadth of a claim (600 feet). They have been displaced in a remarkable manner by parallel north-south faults that dip to the west. All these faults are normal-that is, the ground west of the fault has sunk with respect to that on the east side. The granite on both sides of the veins has been decomposed and bleached by the solutions that deposited the ores. Mining in these small faulted veins has been costly, but miles of underground tunneling attest the value of the ore, which has been found in rather regularly distributed shoots.

this district alone. Among the producing mining camps adjarem (1) Battle Mountain are those of the Mayesville, Kimberly, and Hillop districts, 20 miles southeast. Deposits of lead, copper, silwer, and gold occur in the momatains to the southwest and recently phamer gold has been obtained on the south side of the mometain. Fiver or six million dollars' worth of ore has been taken from the varions mining camps about Battle Mountain.'

From Argenta, 10 miles cast of Battle Mountain, (o) the canyon above Golconda, the river and railroads pasis through an extensive valley about 45 miles long and from 10 to 20 miles wide. Althomgh most of the land along the river has been taken up, several thomsand acres that lie at some distance from the river and that lack a water supply is still under Government ownership.

Piute (elevation 4,509 feet), Valuy (4,507 feet), Stonchouse (\(4,4.51\) feet), Herrin (4,408 feet), Iron Point (4,390 feet), Comus, and Proble (see sheet 20, p. 178) are minor stations passed in turn. Stork amd hay raising are the chief industries in this vicinity. Stonchomse was a station on the Overland Stage route. The name rofers to an old stone building near a spring at the foot of the Battle Momotain Ramge. Conflicts with the Piute Indians occurred hereabonts, and there are many graves in the vicinity. Beyond Stonchouse the railrowd approaches the foothills of lava and cuts through some of the lower spurs. These sheets of lava with some interbedded solter rocks have been broken by faults, and the resulting blocks have been tilted up into ridges having abrupt, broken fronts and gradual bark stopes. Several such ridges are passed in suceession.

At Preble Humboldt River enters another canyon, which extends through the Hot Springs Range. Just east of Preble, abore the upper end of the canyon, may be seen bluffs of black shale with some fractured and iron-stained limestone. West of Preble the limestone, which is exposed in railroad cuts, is in thick dark-hluish beds with veinlets of white calcite, separated by some thick hayers of shate. These strata dip toward the east, and their general trend is southwest, so that the railroad crosses them. The rocks belong, at least for the most part, to the Star Peak formation, of Triassic age. Rocks of this formation make up a large part of the Ihumboldt and other ranges, to be passed later, though there will be no other opportunity to see them so close at hand.

\footnotetext{
\({ }^{1}\) The ores of the Battle Mountain district occur in veins in sedimentary rocks, as replacements of calcareous parts of dark shales, or in contact-metamorphic.
deposits. The main vein deposits are oi two types pyritic gold quartz veins and galena-silver-ealeite verins. Copper has been obtained irom veins wi both types.
}

Golconda, another old stage station, is a warm-spring resort and a supply point for numerous mining eamps. In 1897 a smelter and a concentration mill were built at Golconda to treat

\section*{Golconda.}

Elevation 4,389 feet.
Populat ion 430.*
()mana 1,349 miles. the copper ores from the Adelaide mine \({ }^{1}\) about 12 miles to the south. The ore proved difficult to treat, and the mill, in which several processes were tried, is no longer used. It stands north of the track. The Pequart mine, an early producer, is about 6 miles south of Goleonda, and there is a gold mine in the lone conical hill about 2 miles south of the station. Ranches stretch along the river below Golconda. The crops raised are alfalfa, native hay, and potatoes.

The elevation of Golconda is almost exactly that of the highest level attained by Lake Lahontan, \({ }^{2}\) already referred to as having spread over a large part of northwestern Nevada. The history of this great lake is analogous to that of Lake Bonneville, in Utah, already described (pp. 97-99 and fig. 10, p. 82).

The Overland Route passes across the basin of Lake Lahontan at what is nearly its widest part. For 177 miles from a point in the Humboldt River valley near Golconda to a point in Truckee Canyon about 15 miles beyond Wadsworth or Fernley, the train passes over the bed of this extinet lake, and many of the features of the landscape
\({ }^{1}\) The Gold Run district, in which the most important mine is the Adelaide, is on the east slope of the northern part of the Sonoma Range-the IIavallah Range of the Fortieth Parallel Survey reports. The district was organized in 1866.

The ore is a replacement of limestone and rontains copper, zinc, and a little lead (pyrrhotite, chalcopyrite, sphalerite, and galena with garnet, pyroxene, etc.). The general country rock is dark calcareons slate (Star Peak) of Triassic age.
\({ }^{2}\) The large lake which flooded a number of the valleys of northwestern Nevada at a very recent geologie date but has now passed away was named Lake Lahontan in honor of Baron La Hontan, one of the early explorers of the headwaters of the Mississippi. The lake covered approximately 8.400 square miles at its greatest expansion, and in its deepest part, the present site of I'yramid Lake, it was at least is 5 feet deep-that is, its surface stowi approximately 500 feet above the present water surface of Pyramid Lake. The ancient lake had no, outlet except the ohe that led straight up, its waters being dissipated entirely by evaporation.

Fluctuations of the water level in these ancient lakes undoubtedly record climatic changes. It has been generally concluded that the periods of lake expansion were related to the stages of ice extension in the glacial epoch, or more specifically that their waters rose to their highest levels during the period when the glaciers were retreating from their farthest advance.

With the decrease of water supply the lake level has fallen, and in many parts of the basin the water has almost or entirely disappeared. Traces of former levels remain, however, in the form of elevated beaches. As the lake fell, ridges emerged and separated it into smaller units. Some of these minor basins are now essentially dry, although the lowest parts are periodically flooded to shallow depths during rains. When these areas dry up they show almost level floors with smooth mud surfaces, which check or crack in the dry air. These are the so-called mud lakes or playas, which are in some basins very extensive. The basins that are still fed by perennial streams contain lakes.
and some of the rocks seen in the valleys along the route are widences of its former presence. The mountain ranges stood as islands or peninsulas in this body of water, and when the eye is trained to recognize them the old shore lines can be traced from point to point along the slopes.

Between Golconda and Humboldt Lake Humboldt River llows in a trench that it has exeavated in Lake Lahontan sediments sinew He last drying up of the ancient lake. For a number of mikes below Golconda the river is practically a surface strem flowing between low banks of marly elay belonging to the upper part of the lake deposits. At Mill City its chamel begins to deepen, and at Rye Path the river is a little over 200 feet below the general heve of the desert. The general appearance of the trench cut by the river in the bake sediments is shown in Plate XXXVII (p. 177). The therefold division of the strata exposed in the steep banks (upper lake clays, \({ }^{1}\) medial gravels, and lower lake clays) is easily distmguishen where the beds are not obscured by débris. Below Rye Pateh the lomks decreane in height, and south of Oreana they are in few ptaces orem to or . 50 feet high. The total thickness of the section thus exposed is not much over 200 feet. Borings in the desert valleys, however, have developed the fact that sediments of similar character ocoupy the rock troughs between the mountain ranges, in many phaces to very great depths, probably thousands of feet. No way has been derised of determining how much of this filling was deposited in the Quaternary lake and how much may be older, possibly of Tertiary age.

Beyond Golconda the brown, rusty-colored ranges on both sides of the railroad, having characteristic sharp and ragged peaks and ledgy slopes, afford good exposures of the early Mesozoie shales and limestones, very generally associated with haras.

Eglon and Tule (elevation 4,325 feet) are unimportant stations west of Golconda. Beyond Eglon the railroad bende close around the foothills on the south and is here far enough above the valley to afford an extended view to the north, over Paradise Valley, which is drained by Little Humboldt River. Little use appears to have been made of the lower part of this valley except for grazing and for cotting wild

\footnotetext{
\({ }^{1}\) According to I. C. Russell, mammalian bones were obtained at a number of localities in the sides of the Humboldt and Walker River canyons and, with the exception of a single vertebra found in the medial gravels, were derived from the upper lake beds. So far as determined they include an elephant or mastedon, a horse, an ox, and a camel. The fossils are usually scattered through the sediments, more than one or two bones of the
}
same individual being seldom found at a single locality, though the elephent or mastodon bones oltained in the Humboldt Canyon near Rye lateh constitute nearly an entire skeleton. Many of the bones had been remored as curiosities. however, beiore the collections that were submitted to study were obtained. Recently similar remains have been found in the beach or bar deposits of the iomer lake near the north ent of Pyramid Lake.
grasses for hay. Beyond Paradise Valley the Southern Pacific turns and for a long distance pursues a general course to the southwest. On the right, ahead, Winnemucca Peak projects like an island from the desert plains. A whitish band along its base is the edge of an extensive area of sand dunes. \({ }^{1}\)

The town of Winnemucca, named for a chief of the Piute tribe, is the seat of Humboldt County and serves an extensive ranching and mining country. It was originally a small trading

\section*{Winnemucca.}

Elevation 4,334 feet. Population 1,786.* ()mah\& 1,365 miles. station, established in 1850, on the emigrant route to California and was then known as French Ford. Before the Oregon Short Line was built Wimnemucca was the gateway to the whole of southern Idaho. The Southern Pacific and Western Pacific railroads pass through the town about a mile apart, and Humboldt River flows between them. The agricultural and stock-raising districts tributary to Winnemueca include Paradise Valley, to the northeast, and the Quinn River valley, to the north. Of less importance are the narrow bottoms along the Humboldt above and below the town, on which the chicf crop is wild hay.

The National mining district, \({ }^{2}\) in the Santa Rosa Range, about 70 miles north of Winnemucea, is reached from that town by stage. The National mine is noted for the occurrence of a remarkably rich shoot of ore, which has yielded about \(\$ 4,000,000\).

After leaving Wimemucca the train runs straight down the valley of Humboldt River for several miles, in a course parallel to the river

\footnotetext{
\({ }^{1}\) A large area a few miles north of Winnemurcat is covered with sand dunes formed since the disappearance of Lake Lahontan. This belt of drifting sand extends westward from the lower part of Little IIumboldt Valley to the desert betwren Black Butte and the Dona Schee Ilills and is about 40 miles long from east (0) west and 8 or 10 miles wide. The dunes are fully 75 feet thick, and their steeper slopes are on the east side, thus indicating that the whole vast field of sand is slowly traveling eastward. This progress has necessitated a number of rhanges in the roarls in the southern part of Little Ilmmboldt Valley during recent years. In some places in this region the telegraph poles have been buried so deep)ly that they have had to be spliced in ordar to keep the wires above the crests of the dunes. The sand is of a light creany-yellow color and forms beauti-
}
fully curved ridges and waves that are covered with a fretwork of wind ripples, and many of these ridges are marked in the most curious manner by the footprints of animals, which form strange hieroglyphics that are sometimes diffcult to translate.
\({ }^{2}\) The gold-silver deposits at National were discovered in 1907. The most prominent and widespread rock in the district is basalt, which occurs in a thick series of flows and is probably of Miocene age. The principal ore deposits, however, are associated with older Tertiary lavas, especially with rhyolite and an andesitic rock (latite). The veins were deposited by hot waters soon after the eruption of the rhyolite. They carry quartz, stibnite (sulphide of antimony), free gold alloyed with silver, and other less abundant or less characteristic minerals. Some veins occur also in older rocks.
but high on the terraces along its south side. Grass lable's, an extensive depression between the Sonoma Range on the cast and the East Range on the west, opens on the Humbeldt Valley from the sombth just west of Winnemucca. From the rear platform the town is seren to stand on a broad, flat, brush-covered alluvial stope, leading down from the mountains on the east to the river chamed at the very foot of Winnemucea Mountain. The river bottom lands are but narrow strips, where wild grass is cut for hay.

Beyond Rose Creek (eleration 4,324 feet) the two railroad lines diverge, the Western Pacific taking a route which lies north of the Southern Pacific ronte and passing out of the vallery of lhmmedde River.
From Mill City, which was for a long time an important supply and shipping station, roads lead to Blooly ('inyon, Star City, Chionville, Chafey formerly Dun (ilen), and other camps that were of note in carly days. Most of these camps are south of the railroad.

The valley of Humboldt River in its course through the old Lake Lahontan sediments takes on a more desolate anpert as the river becomes more deeply intrenched in these barmen lays. Apparently no utilization of the narrow river bottoms is attempted here, and the chamel, swinging off to the northwest, is soon lost to view from the railroad.

\footnotetext{
\({ }^{1}\) The discovery of a rich body of silver ore close to the surface in the Sheba mine, on the east side of the West Humboldt Range, due south of Mill City, led to the rapid growth of Star City from 1861 to 1865. The town had two hotels, express and telegraph offices, daily mails, and a population estimated at about 1,000 . This was before the building of the railroad, and all supplies were hauled by wagun from Marysville or Sacramento, Cal. 1n 1871 the town was reported as nearly abandoned. At Unionville there are extensive mine workings dating back to about the same time. Mills were built here at an early date, and from 1860 to 1880 Unionville, although perhaps rivaled or surpassed for a short time by Star City, was on the whole the most important town in the region, as it was the local supply point for many smaller communities in neighboring mining districts. There was considerable activity during the same period near Dun Glen (now known as Chatey).

The Kenuedy district, 50 miles south of Winnemucca and about ha miles by road from Mill City, lies on the east side of the Stillwater Range, and first attrateded attentiou in 1890 . Fennedy som became a flourishing town. mills were built, and considerable work was done in several mines. After the oxidized pay shoots were exhausted the amalgamation mills proved unfit for coping with the complex gold-silyer-lead ores, and since 1904 the district has sunk into obseurity. The total output has been estimated at \(\$ 120,000\).

The mines in the West Humboldt Range have yiekded far more silver than gold. Most of them were opened and were worked extensively before the completion of the railroad. The great intprovement in mining facilities bronght about by railroad communication was not sufficient to offiset the diminution in tenor of the ore bodies below their enriched fortions and the decline in the price of siluer.
}

Imlay, a town of recent establishment, is a railroad division point. With its growth Mill City has declined. Due south of Imlay is the north end of the West Humboldt Range, the north-

Imlay.
Elevation 4,197 feet. Population 326.* Omaha 1,398 miles. ern and higher part of which is also known as the Star Peak Range. Here is an excellent example of the characteristically abrupt termination of the basin ranges. The smooth, gradual slope of the alluvial plain sweeps up to the very foot of the mountain front, and foothills proper are lacking.

South of Imlay is fairly abundant supply of good water is found in springs near the base of the mountains and piped down to the railroad. The natural flow from such springs never reaches far beyond the base of the mountain, as the water rapidly sinks in the loose soil or rocky detritus of the piedmont plains. From Imlay to Humboldt the railroad curves around the north end of the Star Peak Range and then, turning almost due south, keeps the west side of this rugged mountain mass in full view. (Sce Pl. XXXVI, A.)

At Humboldt station is Humboldt House, an old hotel building that was formerly a meal station on the railroad. A good supply of pure water is brought down in pipes from the moun-

Humboldt.
Elevation 4,238 feet. Omaha 1,405 miles. tains southwest of Humboldt, making the place an oasis, with trees and green fields. The Ruby quicksilver mine is in Eldorado Canyon, about 8 miles southcast of Humboldt.
The Star Peak Range \({ }^{1}\) is rather regular in outline and is about 75 miles long. On the south it is separated by a low pass (Cole
> \({ }^{1}\) The star Peak Range is made up of great masses of Triassic rocks belonging to two formations, the Star Peak and the Koipato. The Star Peak formation, the younger of the two, occupies mainly the nort hern half of the Star Peak Range and has an estimated thickness of 10.000 feet. It is made up of quartzite. limestone, and slates, among which have been found fossil remains of both Middle and Upper Triassic vertebrate and invertebrate animals. These rocks are overlain conformaly ly limestone and dark slates rontaining Jurassic fossils. The underlying Foipato rocks, so called from the Indian name of the west Humboldt Range, form a ronsiderable part of the southern half of thestar Peak Range. The Koipato formation was originally described as ronsisting chiefly of beds of quartzite (silicificul sandstone) overlain by interstratified leds of limestone, quartzite,
and "felsitic porphyroids," and as having an estimated thickness of 6,000 feet. According to later determinations, however, the Koipato consists chiefly of lava flows (rhyolite) with subordinate nonvolcanic sediments, including limestones. Much of the rock originally taken to be quartzite is actually rhyolite.

The Triassic slates and limestones of The West Humboldt Range are noted for the abundant and well-preserved fossils found in them. These comprise skeletons of ichthyosaurs ("fish lizards," extinct marine animals of large size), spines and teeth of extinct types of sharks, and numbers of the coiled shells known as ammonites.

On the lower slopes of the Star Peak Range are considerable bodies of Tertiary rhyolite and basalt, with which occur related beds of tuffs or other water-laid sediments of about the same age.

A. SNOW ON THE NORTH END OF THE HUMBOLDT MOUIITAl'S.

View from a point near Imlay, Nev. Ph jtograph furnished by \(S\) uthern Pdufis. Ci.

u. s. GEOLOGICAL SURVEY

CHANNEL OF HUMBOLDT RIVER NEAR RYE PATCH, NEV., EXCAVATED IN THE DEPOSITS OF FORMER LAKE LAHONTAN.

Canyon) from the much lower southern division of the Werst Humboldt Range, sometimes called the Humboldt, Lake Momntains. The Star Peak Range culminates in Star Peak, about 10,000 feet abow sea level. At its south end is Buffalo Peak, abonat 8,400 feet in elerat tion. All along the rugged slopes facing the railroad and also on the opposite side of the range are prospects and mines. Onc mine, the Star Peak, which is being worked, is almost at the summit of the peak whose name it bears. The Rosebud district, abont 28 mikes northwest of Humboldt, or 35 miles north of Mill City, was the site of a boom that followed the diseovery of ore there in 1906. It town wis rapidly built, to be as quickly abandoned.

Some mounds about half a mile south of Humboldt, of the right, (west) side of the Southern Pacifie irack, are composed prineipally of calcareous tufa. Each mound has an opening at the top lined with crystallized gypsum and sulphur. These deposits were undoubtedly made by hot springs, that are now extinct. Small pits and an old retort just west of Humboldt mark the site of some old works on these sulphur deposits, but the supply was evidently too small to be of economic importance.

Beyond Humboldt the railroad continues down the east side of the valley over a broad, gently sloping plain of stony detritus and sand, washed down from the mountains. Valery is a sidetrack and loading platform for the Star Peak mine. The mining camp may be seen by looking sharply at the right-hand end of a long, dark rocky ridge near the crest of the range. A deep cut along the railroad at milepost 373 exposes a sand and gravel bar, a beach deposit of Lake Lahontan. The old beach lines may readily be traced along the hillsides, particularly late in the afternoon of a clear day. From the rear platform there is now a fine view of the higher part of the West Humboldt Range, which shows a lofty continuous crest with exceedingly steep rocky slopes that contrast sharply with the smoothly graded allurial fans that spread out from the canyon mouths and coalesce into a gently sloping plain reaching down to the river.

The old hotel building which serves as the station called Rye Patch is a relic of the boom days of the old Rye Pateh mine. The name

\section*{Rye Patch.}

Elevation 4,256 feet. Omaha 1,416 miles. Rye Pateh refers to the wild rye grass that formerly grew abundantly about the place. The Rye Patch mine, about 5 miles east of the station, produced much silver ore in the early seventies, but has lain idle for over 20 years. Lately a cyanide plant has been installed, and the old dump is being reworked. The ore oremed in linestone, probably of Triassic age.

After passing Rye Patch the train runs nearly due south, the track lying well up on the broad, gently sloping alluvial plain between

IIumboldt River on the west and the West Inumboldt Range on the east. (See Pl. XXXVII.) Beyond Rye Pateh is Zola.

Nenzel, which until recently was called Nixon (see sheet 21, p. 184), is near the site of the old town of Oreana, noted as being the place where silver-lead smetting was first successfully

Nenzel.
Elevation \(4,1 \times 5\) feet. Omanal 1,424 miles. carried on in Nevada. Oreana has been referred to as the birthplace of silver-lead smelting west of the Rocky Mountains, but some lead was produced earlier at Argenta, Mont. The Nevada ore that was first smelted at Oreana in 1867 came from the Montezuma mine, in the Trinity Mountains, west of the railroad.
Nenzel is now a supply station for the new camp of Rochester. A branch railroad, the Nevada Short Line, extends from Nenzel for 5 miles to the mountain foot, but the mines and settlement are high up on the Star Peak Range. As late as August, 1912, Joseph Nenzel relocated some old claims in this district and discovered the ore which has made it a producing district. A small shipment of ore made in August was followed by the discovery of larger bodies later in the year. In less than a month the hitherto desolate canyon had a population of more than 2,000 people and contained many substantial two-story buildings. The total production to September, 1914, is reported to be over \(\$ 1,200,000\). \(^{1}\) In the early days Rochester Canyon and the adjacent ravines yielded considerable placer gold that must have been derived from the disintegration of the gold-bearing veins on the monutain slopes above.

The West Humboldt Range is divided southeast of Nenzel by a low pass, Cole Canyon, which crosses the range obliquely. This pass separates the Star Peak division of the range from the lower Humboldt Lake division. The pass probably marks the place where a fault, which runs along the west base of the Star Peak Range and has caused the elevation of that block, swings across the range to the south. If so, the Star Peak and Humboldt Lake ranges are distinct in structure as well as in form. Traces of recent fault movement can be found also along the alluvial slopes at the west base of the Humboldt Lake Range.

Below Nenzel the train again approaches the river, and the deep trench cut by the river into Lake Lahontan clays is well exhibited to the traveler. Some of the artificial cuts along the railroad are also in these lake-deposited clays, which are capped by gravelly beach

\footnotetext{
1 The ores of the Rochester district are found in rocks which were classed by the early geologic surveys as Triassic (Koipato) sedimentary rocks, but which have now been identified as mainly lavas (rhyolite and some other varieties)? The
silver-lead ores contatining antimony were deposited along zones of parallel cracks in rhyolite. The valuable metals occur with quartz, in the form of argentite, cerargyrite, proustite, and pyrargyrite (all silver minerals), and native gold,
}

(iEOLOGIC AND TOIOMRAPIIC MAP
OVERLANI) ROUTE
From Omaha, Nobraskis, to san Furarrinco, Cialifurnia

UNITED STATES GEOLOGICAL SURVEY (aEORTH OTIS SMITH, DIRECTOR

\section*{1915}

Each quad ongit thown on the was with o ndemp win parerthess is the huuer left moner is moppesi in artaul on the US If Tapoeraphic shere or thot nomis
deposits. The gravel in phaces stides down ore the dats and wonceals them.

Beyond Woolsery, a suding and sertion homse, the mpare beaches of Lake Lahontan are very distined, ceperially in weming light. The railroad now begins to descend to the bromdening bettom lands of Lovelock Valley, with its trees, fidds, and rameh buildings.

Kodak is a sidetrack from which eypsum wat formerly shiperd to a plaster mill at Remo, and lragmonts of the whemen rack are strewn along the railmad. They are of ermantar texture, like loaf surar, and some portions show distince lamination or bamding. The demeit is an immense mass that forms a bare doulf of light-coloned material in the low slopes of the Humbohd Lake hangen opmente Kodak. It is evidently an intertedded layer in the Triaswere sodimentary series, probably a chemical depesit formed in Triasice time in a comparatively small basim. Deposits of gypum wer laid down over very extensive areas during Triassic and Permian (ime in other parts of the country, indicating widespread conditions of ardity in those periods.

Lovelock and the adjacent Lovelock Valler, the lower 16 ar 18 miles of the valley occupied by Humboldt River abow Hmmbldt Lake, constitute one of the most prosproms argi-

\section*{Lovelock.}

Elevalion 3,979 feet. Population 1, f2l:* Omaha 1,43s miles. cultural settements of Nevada. Lovelock is also the railroad and supply point for a momber of mininer districts. At present its principal industrime are connected with the raising of sheep and catle and especially the winter feeding of stock. The rixer is 1.5 to 25 lowe below the gencral level of the cultivated flood phain, so that it is necessary to bring the water for irrigation in ditehes from perints upstream. In 1900 about 14,000 acres were irrgated, abs a little over half of this area was in alfalfa. Wheat, barlery, and potatoces are also grown, and the town hats a flour mill.

Of the mining camps which are gencrally reathed ly way of Lavelock, Seven Troughs, a grold camp, is at present the most impertant. North of Lovelock, in the Trinity Moriatains, is the Montwomma mine, which supplied antimonial laal-silver ore to the Oreana smelter in the sixties. There are a mumber of antimony deposits in the

\begin{abstract}
\({ }^{1}\) The Seven Troughs district, ineluding four little towns, seven Troughs, Vernon, Mazuma, and Farrell, is about 30 miless northwest of Lovelock and lies on the east slope of a minor range now gemerally known as the Seven Troughis Mountains. It is one of the more recent camps, not much prospecting having been done here before 1905 or 1907 . The ores are in
\end{abstract}

Tertiary rolnanir roxks aml ox"ur in veins of molt, (rushed material which does mot (rope out at the surtace. 'Ther veins carry native end containing a consiberable proportion of silcer, in sugary quartz. Aome very rich ore hats been fomme in this district, amd somo wi the mines have yiolded considerable returns.
momntains hereabout, one of them in the West Humboldt Range a few miles east of Lovelock. Nickel and cobalt deposits, not now worked, oceur in the Stillwater Range about 30 miles southeast of Lovelock. A little niter has been found in this neighborhood, chiefly in the Itumboldt Lake Range. \({ }^{1}\)

From Lovelock the railroad continues down to the west side of the Humboldt Valley, at first through broad fields of hay and grain. At Perth (a sidetrack) there is a very large pit from which gravel has been taken for grading along the railroad. The gravel here, as at other places in this part of Nevada, is one of the old beach deposits of Lake Lahontan. Shore terraces, which are in many places very distinct, may be seen here on both sides of the valley.

Beyond the cultivated region the low irregular valley surface consists of a mixture of clay and sand in dunelike form, the lumpy surface being due more or less to the growth of brush and to consequent local protection from the wind. The yellowish-green brush that covers the country is greasewood (Sarcobatus), which seems to prefer ground that is otherwise unproductive.

Granite Point (cleration 3,973 feet), a railroad siding and group of section houses, is named from a rocky bluff that projects into the west side of the valley below Lovelock. It is horizontally scored by the upper Lake Lahontan terraces. Below this point the valley is more barren, the hard white clay in the low-lying ground supporting only isolated clumps of greasewood.

Humboldt Lake, a water body of irregular outline and variable area which receives the surplus drainage of Humboldt River, comes into view at or a little southwest of milepost 334. It is on the left (east) of the railroad, at the bottom of a broad, smoothly graded wash slope. The level and size of the lake vary greatly with the seasoms. At times of high water it overflows into Carson Sink. At other times, however, evaporation exceeds the supply and the lake decreases in size. The water is not densely saline, as it is partly

\footnotetext{
\({ }^{1}\) Saltpeter, or niter, which is a necessury constituent in the manufacture of most gunpowders and is also very largely used for fertilizers and for other purposes, has been found in small quantities in many places in the United States, although practically the entire supply of these salts now used in this country is (日) tained from Chile. Niter was diseovered in the foothills bordering the Lovelock Valley at about the time of the first coming of the railroad through this part oi the comntry, and the possibility of developing a local supply of these impor-
}
tant salts has ever since been a source of intermittent interest. Incrustations of salt containing in some places a considerable proportion of sodium nitrate are found on some of the fractured cliffs and ledges of volcanic rock just above the edge of the valley land south and southeast of Lovelock. Continued exploration and experimentation in these districts have, however, failed to discover any mass of niter-bearing material of sufficient volume and richness to justify or encourage an enterprise for its commercial development.
freshened by occasional werflow into tha final "wapmation pan" "f the Carson Desert.

Beyond Toulon (a sidetrack) the railroad gradually appromblus the lake. There is no cultivation of the gromm about here, motand settlement other than that representen by the railroad sumben houses. At high water a namow ridge parallel to the railroad appram as a long tongue of land that cxtends out into the lake paraltel to the shore. A telephone lime runs down the valley amd very commonly the poles here stand well out in the water. These poles wres sit when this part of the valley was dry hut the wire was later put on them from boats.

The Humboldt Lake Range, at the cast side of the valley. dwindles to a long, narrow ridge extending off to the sontherest. Orim this summit, bevond its southwestermmost point, lies the Carson Desert, one of the most extensive of the Nevada desert rallers, and its saline lake, Carson Sink.

Toy (formerly Brown's station), a group of railroad sertion houses. stands just above the edge of Humboldt Lake at high water. A litt la beyond this place the railroad croses the line botwen

\section*{Toy.}

Elevation 3,930 feet. Omaha 1,453 miles.

Humboldt and Churchill counties. In the hills northwest of Miriam (a siding) a deposit of scheedita \({ }^{1}\) was recently found.

The basin of Humboldt Lake is partly closed at its lower or southwest end by a remarkable gravel embankment which look: like a great artificial dam. Just beyond milepost 3233 the railroul passes through one end of this embankment in a deep cut that exposes well the character and attitude of the beds of which it is built. The embankment is clearly one of the beaches or hars of former Lake Lahontan. Such bars are formed by waves and currents in lakes or along the seashore at the present time. This rmbankment, now high above any recent water level, with wern erest and smoothly eurving front in its sweep across the vallery is a striking topographic feature.

The embankment is cut across in one place near its somth end by the overflow from Humboldt Lake. The brearh has becoll partly repaired by an artificial dam which largely increasces the area of the lake and, it is stated, furnishes power for mining and milling. Humboldt Lake overflows only a part of the time, but at very high water a considerable stream passes from it to Carson Sink. The breach through which it overflows can be seen from the train by looking back after the embankment has been passed. The embankment is

\footnotetext{
\({ }^{1}\) Scheelite (tungstate of calcium) is a very heavy mineral, which is ordinarily found in veins in crystalline rocks. It is an ore of tungsten, a metal that is used
to form an alloy with steel, made for uses requiring groat hardness. Tungsten is also employed in making filaments for electric lights.
}
more or less concave toward the valleys on both the upper and lower sides, but the backward view from the lower side best shows its form.

The railroad crosses and recrosses the overflow channel, traversing broad stretches of bare white mud and irregular areas of lumpy ground built up from white sand and clay. About 2 miles beyond Ocala (a section house at milepost 320) salt vats and a small saltmaking plant lie close to the railroad, in the middle of one of the white clay flats or playas. (Sce p. 154.)

The station called Huxley (formerly White Plains) is approximately at the junction of the present railroad with the

\section*{Huxley.}

Elevation 3,908 fent. omaha 1 , 4 fin miles. original line of the Central Pacific, which ran from this point due southwest, elimbing over a divide of several hundred feet and passing a station called Mirage. The present line swings southward along the border of the Carson Desert.

The Jessup mining district, a gold camp, lies in the mountains 10 miles northwest of Ituxley. Some shipments of gold-bearing ore were made during 1908 and later, but the district has not been a large producer.

One of the first deep wells drilled in the West was put down near this place by the Central Pacific Railway in 1881, in a search for good water. The boring reached a depth of 2,750 feet, but the water obtained was of very unsatisfactory quality. At 1,700 feet the drill encountered a bed of "petrified clams," and the record states that at 1,900 feet well-preserved "redwood timber" was found.

Inxley is the shipping point for the small salt plant passed a short distance back. An old kiln east of the track has been used in the past for making lime from a mass of compacted shells constituting one of the shore deposits of the former Lake Lahontan. This deposit seems to indicate that the lake waters could not have been very heavily charged with salts at the time when the inhabitants of these shells lived, although it must be admitted that the shells might have been washed into the lake by Humboldt River. Many of the shells are intact and perfectly preserved. The shell deposit is said to be rontinuous for several miles along this part of the valley.

Near Iluxley the river spreads out, forming extensive marsh lands (the Mopung marshes), and during flood seasons this region is often a favorite resort of waterfowl. The small lakes are said to be full of carp and other fish at such times, doubtless carried down from Itumboldt, Lake. Pelicans, ducks, geese, snipe, and other waterfowl are found in the vicinity of the Nevada lakes and marshes.

At milepost 315 is the beginning of another long tangent of the railroad which heads almost directly south. Along this stretch the valtey opens out toward the Carson Desert, across which the Stillwater Range may be seen in the distance. From Huxley to a point

a little beyond Hazen the train passes through some of the most typically desert country to be seen along the whole route. The overflow channel from Humboldt Lake is crossed for the last time, as it turns off to the east toward the lowest part of C'arson Sink. The railroad passes along the margin of the sink, which has here al lumpy dunclike surface consisting of sand and clay soil, the momeds surmounted by isolated patches of greasewool.

Parran is the lowest point on the Nevada portion of the Southern Pacific route. The salt-inermsted surfare about the station is typiond

\section*{Parran.}

Elevation 3,88s feet. Omaha 1,470 miles. of the margins of the large playas that are common in these deserts. Water gemerally stands on the surface of the sink, and in the distanee on its somth side may be seen a thin line of dark frees traiting out into the desert. These trees are cottonwoods, which border the lower channel of Carson River, the principal soures of the water that flows into the sink. At Parran is an old salt plant which hats not been operated for several years, but which formerly produced a few hundred tons of salt amnally for local use at no at-hy settloments. There is a water tank and pump station at Parran, but all the water used at this place is brought in tank cars, being rum into an underground cistern from which it is pumperd into the tank.

Beyond Parran lies a desolate streteh of barren dmes of 'llay and sand with seattered clumps of greasewood. The desert is bordered on the northwest by bare hills, whose slopes, in many places arem to the summits, are covered with white, wind-driltod sand. The scenery along this part of the route offers but little varioty and surgests extreme desolation. (See Pl. XXXVIll.) lligh samd dunes, more or less covered with greasewood, and small bare mond plains (playas) contime beyond Hazen. Just east of Hazen is amother gravel pit which, like several already mentioned, is in one of the beach-bar deposits of former Lake Lahontan.

An extensive area in Nevada may be considered tributary to the man line of the Southem Pacific ley way of Hazen. Within this area are the Tonopah, Goldfiedd, leringtom, Luning, Silver Peak, Rawhide, Womder, Fairsiew, amd other well-known mining districts.
Fallon, 15 miles away on the low, broad alluvial fim of Carsom - River, is the center of the Truckec-Carson irrigation projece.' It
> \({ }^{1}\) On the western border of the Great Basin, in the bed of ancient Lake Lahontan, in Nevada, the Govermment is bringing to completion a project to irrigate more than 200,000 acres of land. This is one of the driest parts of the Uniter States, and was called "Fortymile Desert" by the gold hunters who crossed it

\footnotetext{
on the way to California. Its average ammal rainfall is only 1 inches. 'To tha man from the hamid region the valley at first looks bery desolate, but to one arcquainted with these deserts the lahoman comotry presents many attractions. As the train from Hazen nears Fallon the possibilities of the region
}
is reached by a branch railroad from Hazen which passes the old settlement of Ragtown. \({ }^{1}\)

Another branch line runs south from Hazen to Goldfield, which is connected by rail with Las Vegas, Nev., on the Los Angeles, San Pedro \& Salt Lake Railroad, and with Ludlow, Cal., on the Santa Fe system. This line gives aceess to Yerington" by a branch from Wabuska, to Rawhide by a branch from the head of Walker Lake, to Silver Peak by a branch from Tonopah Junction, to Tonopah, and to numerous other mining districts. Connection may be made also at Fort Churchill for Virginia City (the Comstock lode; see Pl. XLIII, p. 189), Carson, and Reno.
The deposits at Tonopah \({ }^{3}\) were discovered in 1900, when the mining industry generally in Nevada had sunk to a very low level.
become more apparent. It has all the potential resources of the country that surrounds Boise, Idaho, and Greeley, Colo., and the energetic citizens who are settling here will in a few years make this district as fertile and famous as those.
The soil is sandy loam, clay loam, and volcanic ash. The valley will produce every variety of crop grown in the North Temperate Zone. Alfalfa, wheat, barley, and oats grow luxuriantly, and sugar beets are a profitable crop. Apples, pears, apricots, and cherries, as well as garden vegetables, do well and find a ready market in the mining towns near by. Potatoes, celery, and cantaloupes raised here are of superior quality and are shipped for consumption on dining cars and in first-class hotels. A considerable number of farms now await settlers, and additional areas will be thrown open from time to time to meet the requirements of homeseekers.

The Truckee-Carson project was the first of the large irrigation projects undertaken ly the Govermment. The waler is derived from Carson and Truckee rivfrs, that from the Truckee being brought arross the divide at Fernley by means of a large ranal.
\({ }^{1}\) before the railroad was built overland emigrant travel followed various routes, one of which passed north of fireat salt Lake and came down Hlumlowlt River. At that time, of course, Hazen hat no existence, but one of the prineipal stations along the old route wa* hagtown, a lew miles sontheast of hazen. It was merely a trading station and derived its name from its ragged and miser-
able appearance, for about the station stood a group of huts of Piute Indians, constructed of brush, pieces of old wagon covers, ragged remnants of tents, old quilts, and Indian mats, a more or less familiar sight in parts of Nevada even to-day. (See Pl. XXXIX.)

Near Ragtown, not far from the present railroad between Hazen and Fallon, in the midst of the sand dunes of the Carson Desert, there are two remarkable lakes, formerly known as the Ragtown ponds, now called Big Soda and Little Soda lakes. They are believed to be old volcanic eraters, whose tops are now almost on a level with the desert. They contain a strong solution of sodium carbonate, or washing soda, together with other salts, from which soda was for a time extracted.
\({ }^{2}\) Yerington is a copper district. The principal ore bodies are of irregular shape and wecur in Triassic limestone near intrusive masses of granite (granodiorite). They belong to the type of contact-metamorphic deposits. The minerals characteristically associated in the deposits are pyrite, chalcopyrite, garnet, and pyroxene. There are also some veins in the district.
\({ }^{3}\) The Tonopah deposits are quartz veins (arrying a number of silver sulphide minerals, particularly argentite, stephanite, and polybasite (the last two containing antimony as well as sulphur), with some gold. The country rocks are trachyte, rhyolite, and andesite. The veins have been faulted and displaced in a remarkable manner, so that skill is required to mine them.

GEODOGIG ANH TOPOMRAPHIC MAP
() VERLAND R()HTE

\(1!117\)

\footnotetext{
TONUPAH, NEV, A TYPICAL MINING COEMM:HTY
}

The diseovery greatly stimulated prosperting and lod for the revival of mining throughout the state. The distriet han produced silver and gold to the total value of mome than \(\$ 800,000,060\) from rems in Tertiary volcanice rocks. (See Pl. XI.)

The discovery of gold at Gohdiedd' in 1902 wan an direed outcome of the development at 'Tompah. The deposits here alsw oreme in Tertiary volcanic rocks, but in form and chamener they are contirels different from the Tonepah veins. The total production from (boldfield to the end of 1913 was over \(\$ 65,000,(0)(1)\) in gold and siturer. of late years considerable copper has been recosered from the whemtrates of the Goldfield mills. (See Pl. NLL.)

Argo and Luva, west of Hazen, are merely sidetracks, cexept that Luva stands at the junction of the main line with a mow little-used branch that connects with a part of the origimal line of the Contral Pacific, until lately operated as far east as Lecte. where them atw old salt works. Formerly the main line of the railroat followed a more direct route through this valley to White Plains (Innaley). The present route by Carson Sink, though longer, awoide a siop and troublesome hill, where helper engines were employed.

Fernley (see sheet 22, p. 202) is one of the more recently dereloped agricultural settlements resulting from the Truckec-Carison reclama-

\section*{Fernley.}

Elevation 4,157 feat. Omaha 1,506 miles. tion project. The ditch from Trucker Rivor rums along a hillside a considerable distanee south of the railroad, and from it water is supplied for irrigating some very promising bench lands. Good wator for domestic use is found in wells 100 or 200 feet deep. From Fernley a recently finished line of the Southern Padific, known ats the Fern-ley-Lassen branch, extends north and northwest into (alifornia. Here also the traveler erosses the divide between two modern subdivisions of the former Lahontan basim, going from a hawin tributary to Carson Sink into the valley of Truckee River, whence all natural drainage passes northward toward Pyranid and Winnemurat lakes. As a part of the Truckee-Carson project, a part of the Trincker River water has been artificially diverted over the Fernley divide into the Carson and Humboldt basins.

Truckee River, named from the Indian guide of Gen. Fremment. flows through the old town of Wadsworth just heyond Fernley and 100 or more feet below the present railroad grade. The original route of the Central Pacifie passed down into this valley, and Wialsworth

\footnotetext{
\({ }^{1}\) The Goldfield deposits, which are rather irregular in form, occur along zones of fissuring in dacite, andesite, and latite, all closely related lavas. A large part of the ore consists of silicified por-
}

\footnotetext{
tions of these rocks. The erold is parlly free, partly combined with tellurimm. A peculiar feature of these deposits is their content of alunite, a hydrons sulphate of potassium, sodimm, abl aluminum.
}
was one of the important stations on it. Now, however, the railroad swings to the south to maintain an ever grade on the westward climb along upper Truckee River.

Truckee River rises in Lake Tahoe and is of greater purity and subject to less fluctuation than any other stream that enters the Lahontan basin. At Wadsworth the Truckee makes a bend to the north and then flows through a narrow and canyon-like channel for 18 or 20 miles to Pyramid and Winnemucca lakes, where its waters are evaporated. Wadsworth was formerly a trading post and also served as an Indian agency and fort. Pyramid Lake is still included in an Indian reservation, the present Indian agency being situated at the south end of the lake near the mouth of Truckee River. The Indians are mostly of the Piute tribe. There are many references to Wadsworth in the history of the early events in this part of the country.

West of Wadsworth a backward view down to the narrow bottom lands along the river presents a pleasing contrast to the rocky barrenness of the hills on either side, at least during the summer, when a stream of clear water glitters amid green fields and trees. The train soon cuters the Virginia Range and the canyon of the Truckee, which gradually narrows upstream. The rocks exposed in the canyon walls are mostly lavas, including volcanic flows and interbedded layers of volcanic tuff or ash, representing successive periods of volcanic activity. The lavas are of varied character, including light-gray rhyolite, darker andesite, and black basalt. At lower elevations along the bottom of the canyon are white, even-bedded clays, lying horizontal, which were left by the receding waters of Lake Lahontan. These clays rise to the maximum level reached by the former lake waters, about 4,400 feet above present sea level.

Between mileposts 273 and 272 the mining district of Olinghouse \({ }^{1}\) may be seen, though it is at some distance across the canyon to the north or northwest. This district is now reached by way of Wadsworth.

Opposite milepost 265 are the reservoir and diversion dam (Pl. X'LII, p. 18S) by which Truckee River water is taken into the ditch of the Truckee-Carson reclamation project. Unassorted and unconsolidated deposits of bowlders, gravel, and sand exposed in some of the railroad cuts are recent river deposits. The somber coloring of these harren rocky slopes is very characteristic of the Nevada desert ranges, particularly of the volcanic regions. Rock cuts along the railroad expose also some materials of brilliant hues, principally weathered

\footnotetext{
\({ }^{1}\) The White Horse or Olinghouse district lies on the east side of the Virginia Range and covers about 6 stuare miles. The pervailing conntry rock is andesitio
lava. The district has yielded fine ore specimens and has shipped some good ore, but on the whole it has not been very productive.
}
volcanic tuffs belonging to the suceession of lavas of which the Virginia Range is mainly composed.

Gilpin (a sidetrack) is in the midst of almost contimons row \(\begin{aligned} & \text { ant } \\ & \text { and }\end{aligned}\) and clifls, mostly in hasalt and hasaltie tufls. The chammel hew is so narrow that little or no cultivation is perssible alone the stream. At low elevations near the river chamel the horizontal white lake beds are clearly exposed across the vallery.

Derby was formerly the junction ol the original route, which passed by way of Wadsworth, with the present line, but the uld trank dewn the south side of the river has now heen taken up ant the grade is used as a public road. West of Dorby the eanyon narrows and its walls become higher, comsisting of continuous blufles that show the lava flow rocks and interbedded layers of ash, including depositsof white tufl and diatomaceous earth, which appear as conspictons white carthy bands at a number of places, both high and low, on the slopes. 'The successive flows of clark lava show here in the stemp blufles across the river, on the south side of the canyon.

The line between Storey and Washoe comotios follows the chammel of Truckee River, and county-line posts are seen at one end on the other of the bridges.

Clark is a minor station in the canyon and is the point of sleparture for the Ramsay mining district, \({ }^{\prime}\) in the Virginia Range, fo thr sonth.

\section*{Clark.}

Elevation 4,257 feet. Omirha 1,520 miles.

West of Clark the Lake Lahontan clays arre exhibited in euts along the railroad. These extend to a siding named Ditho (eleration \(4,30 t\) leet), where the last remnants of such deposits are found, the tratk lered at this point being almost exactly coincident, with the uppermost level reached by the waters of the old lake. This is therefore the western limit of the former Lake Lahontan, whese lasin the railromel has been continuously crossing from a point at exactly the same level in the Humboldt Valley near Golcoula.

For several miles beyond Ditho remmants of a very recent thomerh prehistorie lava flow may be seen in the river valley. The flow is a layer, apparently 10 to 20 feet thick, of dense black hasalt, which lies chiefly along the very bottom of the valley. It is exposed in eross section at several places by the rutting of the river and along the old railroad grades, which lie slighty above the present ronte. This lava has flowed down since the valley attamed practically its present form.

\footnotetext{
\({ }^{1}\) Ramsay, a town of about 100 inhabitants, is 17 miles somth-southeast of ('lark station, with which it is commected by a good road traversed by a daily stage. The
}
combtry rock is Tortiary lava (amberile and a litila royoliter). Several mines have shipped some gold ore, but the perduelion has not been large.

West of Hafed, a sidetrack opposite a ranch on the valley bottom, some grool examples of columnar jointing in the basalt lava are exposed just above the railroad track. (See footnote,

\section*{Hafed.}

Elevation 4,376 feet. Omaha 1,529 miles. p. 121.) Volcanic tuff, both coarse and fine, apparently underlies the basalt and forms bluffs. To the west the river channel narrows again and is bordered on both sides by steep rocky ridges and spurs.

Vista, an old station and group of section houses, is at the upper end of the canyon in the Virginia Range, and immediately beyond

\section*{Vista.}

Elevation 4,395 feet. Omaha 1,532 miles. it the Truckee Meadows spread out broad and flat. The extreme lower part of the meadows near the entrance to the canyon is marshy, from a cause explained in the footnote on page 189 . The many prospects of the Wedekind mining district may be seen in the low foothills at the margin of the valley to the north. The district has never produced much ore.

The city of Sparks was named after John Sparks, governor of Nevada from 1903 to 1906. Although the second city in Nevada in population, it is primarily a railroad division

\section*{Sparks.}

Elevation 4,225 feet. Population 2,500. Omaha 1,536 miles. point and contains the Southern Pacific Co.'s shops and roundhouses. A stop of 15 or 20 minutes is usually made at the railroad offices and shops, where a huge mountain-climbing locomotive is substituted for the ordinary one. After another stop at the passenger station, three-fourths of a mile farther on, the train proceeds westward \(2 \frac{1}{2}\) miles across the open valley to Reno. \({ }^{1}\)

\footnotetext{
\({ }^{1} \mathrm{~T}\) o the westbound traveler the view to the rear across the Truckee Meadows toward the narrow gorge by which Truckee River passes throngh the Virginia Range is suggestive of many events in the geologic history of this general region. The Virginia Pange illustrates the block-fault

\begin{abstract}
connected with the level plain at its foot by short slopes of talus and small alluvial fans. These works of erosion and deposition, however, do not obscure the fact that the range is essentially an uplifted block of the earth's crust, and the valley below, now buried by river flood-plain
\end{abstract}
}

Fricke li,-Diagrammatic cross section showing the geologic structure of the Virginia Range in its relation to Truckee Meadows.
structure that characterizes the ranges of the (ireat Basin. Its front stands like a great wall along the lower edge of the meallows, almost no foothills intervening between momtain and plain. The stefore part of the mountain front is trencherd by gulches or canyons and is
deposits, is a relatively downthrown block. (See fig. 16.)

The mountains around the Truckee Meadows are broken by a narrow gorge through which Truckee River escapes. This gorge, now deep and narrow and worn into solid rock through the most of

UTNITED STATES RECLAMATION SERVICE DAM ON TRUCKEE RIVER IN THE VIRGINIA RANGE, BELCW REF:?, AE
u. s. geological surver

VIRGINIA CITY, NEV., ON THE FAMOUS COMSTOCK LODE

The largest city in Nevada is Remo, the seat of Washoe County,

\section*{Reno.}

Elevation 4,497 feet. Population 10,867 . Omaha 1,539 miles. which has long been the principal commereial and industrial center of western Nevada. From this point the Virginia \& Truckee Railroad runs south to Carson (31 miles), the State capital, and to Virginia City (52 miles), the locality of the famous Comstork forle,
its course, has undoubtedly been cut by the river. It seems that such a channel may have been developed in one of two ways. Either Truckee River. dammed by the rise of a mountain ridge across its path, formed al lake and, after an outlet had been established by overflow at some low point on the margin, gradually wore this down into a canyon. or else the river. having established its channel across low-lying phains that existed before the mountains were uplited. simply maintained its course by cutting down its clamnel as fast as the momtain barrier rose. That the latter hypothesis is the true one appears from the following considerations. If the site of the Truckee Meadows had ever been dammed to a considerable depth by upliit of the Virginia Range, the lake waters would have soon found an outlet through a low pass to the north, reaching Pyramid Lake by a more direct course than they now take. There is, however, no sign of snch a channel nor of traces of shore lines about the valley to indicate that the lake ever rose to this height.
The uplift of the ranges in the Great Basin and of the Sierra Nevada, which is now near at hand, is a comparatively recent event as reckoned on the geologic time scale. (The term uplift is used only in a relative sense; it does not necessarily imply actual uplift. Some apparent uplifts may be due to a sinking of adjacent valley areas.) These mountainbuilding movements began late in the Tertiary period and have continued even down to the present day. Little ly little blocks of the surface crust readjust themselves, and here and there earthquakes or the opening of fissures at the surface signify the gradual slipping of one fragment of the earth's crust against another. Probably the movements that uplifted the higher mountain ranges took
place in the pasi in much the same gratwal manmer as to-day. The cast from of the Sierra is now an tarlhynaker yone. in which are ielt orcavional shorks and tromors due to movements in the sarth's (rust, and thesc aplyar to come periond. ically. They may he irequent ior a perionl covering serveral months. which may be followed by a period of relative quiessence.
The Truckee Meadows may halw been intermittently a shallow lake and a meadow. It present the river is flowing over volcanic bedrock at the emtranes to, the canyon, on the cast, while the valley above is occupied \(1, y\) alluvium and \(p\) kssibly some lake bels. The ground water. following the general course of the stream. rises as it encounters the natural rock dam at the entrance to the canyom, making the lands above the emyon ontrance marshy.
The mountains around the Trucke Meadows are composed of sedimentary rocks that are probably Mesozuic or possibly in part Paleozoic. ignems, and metamorphic rocks, and lavas and associated sedimentary deposits of Tertiary or later age. The pre-Tertiary rocks were exposed for a long period to weathering and erosion before the Tertiary sediments were laid down upon them. In Tertiary time an extensive series of volcanic flows was poured out, accompanied by showers of volcanic ash and the accumulation of fresh-water lake or marsh deposits. These materials, with the deposits spread lo: ruming streams, form the later group of geologic formations here represented. The geologic colmm in the vicinity of Reno is very incomplete-that is, long periods of geologic time are unrepresented here in the recorl preserved by rock formations. Although some deposits may have been laid down during these perions and later entirely worn away, it may be
with the discovery of which Nevada's mining history began:' To the north the Nerada-California-Oregon Railway reaches Alturas (184 miles), in the northeast corner of California, and has lately been extended to Lakeview (238 miles), across the line in Oregon. Reno is the seat of the Nevada State University, which includes the Mackay School of Mines. Its manufactures include flour, foundry and ma-chine-shop products, packed meats, and beer. Farming and stock raising are important industries in this vicinity, particularly in the
inferred in general that the land surface in this vicinty was clevated and that l,y crosion its rocks were contributing to sedimemtation in other paris of the region.
The lavas are principally andesites of varied mineralogic composition, but the series inclutes also much rlyolite and some lasalt. All the lavas are interbedded with layers of voldanic ash, tulfir, or tulf-lweccia, the last consisting of angular lava fragments thrown out from the rolcanic vents. Most of the lavas are Tertiary, but some are more recent.
The foreroing summary of volcanic adivity applies estrecially to the eastern Sierra foothill bell, but it is broadly applicable to the whole western part of the (ireat Bawin province. Moreover, the lavas here destribed are undoubtedly related diredy to the extensive flows that spread ont over the Sierra, allhough the later sedimentary recerd west of the Sierra divide is entirely distinct from that in the Great Pasin.
\({ }^{1}\) Virginia (tity (Pl. NLIII) is in the Virginia Range near its crest, only 12 (1) 1.5 miles south of the canyon through which the raitroal crosses these mountains. Ten years after the first gold excitement in Caliornia prospectors began 10 search the strean clamels of Nevada. They fonnel "pay dirt" along Carson River and tracell these gravels far upsitram. In Jannary, 1859, prospectors followed these gold gravels to their source hight on the stopes of Mount Davidson, anll as washings from the loose surface (Thpmings yielded rich returns, they dug down to bedrock. Then it was that the lonle was diseovered. 1 rush of prospectors followed, and Virginia City rapidly grew into one of the principal towns of the far Wist. In 1870 a narrow-gage 1 ,ranch railroad, 52 miles in length, was
completed from Reno. This has been referred to as the most prosperous railroad in the country in its day, as it was said for a time to have regularly operated 40 trains a day over its 52 miles of crooked track. As the workings were deepened the ingress of hot water and the high underground temperature made mining diflicult. The mines were in part drained by the Sutro tunnel, a notable engineering feat for that time. Work in the deeper levals is rendered possible only by the constant forcing of large volumes of air through the entries and a liberal use of ice water, both for drinking and for loathing, by the men, who work in very short shilts.

The Comstock locle is a great fissure vein, 4 miles long, along a line of fathing in the Tertiary eruptive rocks (chiefly andesite) of the Virginia Range. It crops out on the east side of Monnt Davidson. The mountain range but not the summit may be seen in clear weather from Reno by looking up the open valley to the southeast. The ore, which is of high grade, carries silver and gold in quartz. In the old days it occurred typically in great bodies called "honanzas." The distriet was noted for the large scale on which everything comnected with the mining, including the speculation, was carried on. The size of the old dumps and the kind of marhinery employed show even those who are used to mining that great things were done here. About \(\$ 400,000,000\) in grold and silver, in the ratio, by value, of 2 of gold to 3 of silver, has been taken out of the Comstock. Considerable ore is still being mined, but the great bonanzas have been worked out, and Virginia City is a melancholy wreck of what was once a lively town of some 20,000 people.

Truckee Meadows and in the hroad expanse of oper vallers lying in the south, in the upper Carsen Valley.

Reno lies near the extreme western colge of Nexala and of the (irmat Basin, at the foot of the Sierra Nevalal. Inere Trmence Rimermeress from the foothills of the high momatains and hows ant into the open Truckee Meadows. Now, as in the carly piomer days, Rome is a landmark in the joumey areoss the comtinent. Here conds thas fong stretch of desert, and here the high timbered shomes of the Gierra Nerada, with their streams of fresh rmming water, appear hear at hand. On the site of the present city a road home wats ereeted in 1859 for the accommodation of travelers and freight teans on their way to and from California. By 1Nfis this phare hat herome known as Lakes Crossing, and five years later it was chosen as a site for a station by the Central Pacific Railway. The name Romo was given to it at that time in honor of Gem, Desse Lee Rems, a Federal officer of the Civil War. It became an important point of distribution for this part of Nevada, particularly for the adjacent towns and ramps, which included the already famous Comstock.

Carson, the capital of Nevada, lies about 30 miles to the sombla amb, like Reno, stands in a broad, fertile valley at the eastem hase of the Carson Range, a front range of the main siemat. This is the upper valley of Carson River, which, like the Truckee, flows castwarl into the Great Basin.

About 10 miles south of Reno on the road to (arsom is a gromp of hot springs known as Stemboat springs. These and other hotspring waters along the Sierra front have their origin in the heated depths of the earth, and come up along fanlt fissures generally parallel with the Sierra. The ground around Stemmath springs hat been built up by silica deposited by the hot waters, as a low ridge al' white sinter, which is a conspicuons feature in the lamsape. Many of the pools are actually at boiling temperature, and in cood weather clouts of steam rise from them.'

\footnotetext{
\({ }^{1}\) Steamboat Springs, Nev., has firsured prominently in discussions of the origin of ore deposits. The waters of these springs contain the precious metals in minute quantities, and the sinter deposited by them contains several mincrals that are common constituents of ores, as well as small ruantities of many of the rarer metallic constituents of ore deposits, including gold and silver. Such spriugs. therefore, suggest that many and perhaps most ore-bearing veins have been formed by hot waters rising from great depths, which have brought their metal contents upinsolution and deposited them in open
}
spaces on tissures in thr rows fhrongh which the watore passed, the deposition of some ores being influmered by dhemi(al reatem with the surrommding rusk. Many ore deposits are modonbtedly formed in other ways, forsome are mingestionally of sedimentary origin and the metal content of some others has been carried down, redepositad, and comerntrated by rain water that desermeded into the earth"s crust ; but the"hydrothermal" origin-that is, their deposition from ascending hot water of many of the more valuable ore deposits is indiated ly the close relation observed at many places

Leaving Reno the railroad runs west along the north side of Truckee River, here again confined in a canyon, which, however, is not so narrow or steep as the canyon in the Virginia Range. The river is bordered on both sides by a succession of terraces, the uppermost of which is several hundred feet above the river bottom. In the outskirts of Reno, on the north side of the track, there is a clay pit and brick plant, and beyond them are large pits that have been excavated in the river terraces for sand and gravel to be used in construction work. The site of Reno and much of the valley to the west is overspread by deposits of bowlder and gravel left by the river during the period of terrace building. The open lands at the foot of the high mountains permitted the streams to spread out and deposit the load of bowlders and finer sediments that they had washed through the steeper and narrower parts of their chamels above.

Projecting in places from beneath the nearly horizontal terrace deposits are regularly bedded, tilted sedimentary rocks, the only unaltered sediments of the Reno region known to be older than Quaternary. They belong to a series of fresh-water deposits called the Truckee formation, generally considered of Miocene age. These beds, which consist of clay, gravel, sand, and a peculiar white earth, are fincly exhibited in conspicuous white bluffs 2 to 4 miles west of Reno, and are worthy of particular notice, for the chalk-white earth of which they are so largely composed here occurs in unusual quantity. This chalk-white material consists largely of microscopic shells, or frustules, as they are called, of one-celled plants known as diatoms, \({ }^{1}\) once included under the general name Infusoria. These remains have collected here in numbers so immense as to form deposits hundreds of feet thick and in places make up almost the entire mass of the rock. This mass of fossil diatoms, or diatomaceous
between mineral veins and eruptive rorks. Thermal waters are believed to be, in part at least, given off by slowly corling and solidifying masses of igneous rock (magma) deep within the earth.
\({ }^{1}\) Iliatoms are of many different forms and inhabit both iresh and salt water. They consist of single isolated cells, or of strings of cells attached in linear sucression or in zigzag chains. Those that (ompose the beds west of Reno are entirely of iresh-water origin. All diatoms serrete siliceous shells about their living parts, each shell cousisting of two valves, which fit together like a pill box and its cover. Seen under the microscope they pxhibit marvelous beauty and delicacy of structure. The myriads of such shells
that accumulate after the death of these plants may form large deposits, although the individual shells are so minute as to be undiscernible by the unaided vision. Diatomaceous earth is used largely as a scouring or polishing powder, to which it is well adapted because of the hardness and sharpness of the individual grains and their uniform fineness. It also has uses dependent on its absorptive properties and has been so used in the manufacture of dynamite. As it is a poor conductor of heat and very light it is valuable as a packing for safes, steam pipes, and boilers, and for the manufacture of fireproofing materials. No use seems to have been yet made of the deposits near Reun.
earth, formerly calted infusorial canth, is white and towhs like chalk but differs from chatk in that it is compered of silica instead of lime carbonate. It has adso heen ablled tripolite, from Tripoli, where a similar deposit is fomm. It is so light that it will almost float on water.

Near Lawton's hot springs granite projects through the sediments, and the fresh rock is exposed in cuts along the railroad. The outerop is characteristio: of rock of this type, comsisting of

\section*{Lawton.}

Elevatlon 4,650 feet. Omaha 1,545 miles. weather-rounded joint hooks that look like big bowders but are really a part of the solid roek in place. Beyond the granite stream banks and railroad cuts reveal gravel, sand, and howldemeposits, generally coarse and ill assorted but with nearly horizontal bedding. These are old river deposits, cut into by later deepening of the river chamel.

At the bridges near milepost 234, hy which the wagon road and railroad cross the river, and particularly at the wagon bridge over the railroad, is an interesting exposure of some of the tilted Tertiary strata. Here the beds consist of shale and sandstone and justify their usuai designation as "lake beds" by their uniform thin bedding or lamination. They contain abundant and well-presserved impressions of leaves and grasses. These beds are believed to represent the Miocene epoch of Tertiary time. Beyond the bridge these sediments are again covered by terrace deposits.

Verdi is a lumber town whose history dates bark to the days of the Comstock, before the coming of the railroad, when many of the timbers that went up to the mines wore brought from this

\section*{Verdi, Nev.}

Elevation 4,904 feet.
Population 543.* Omaha 1,550 miles. part of the mountains and hauled by way of Reno. West of Verdi, stretehing north and south as far as the eye can see, is the steep front of the Sierra Nevada, this part of which is known as the Carson Range. The front is determined primarily ly faults. (Sere explanation of formation of Wasateh Range, in footnote on p. 100.) The Trucke emerges from the momatan front after travering a narrow canyon, steeper and more rocky than any part of its lower course. Scattered timber here clothes the momian flanks, axtending town exon to the railroad and river although, of course, all the odder and larger trees were long ago cut away. The green pines with their long needtes and the growth of underbrish afford a wedeme change from the monotonous barremess of the ranges and plains of the Great Basin. There is some cultivation in a small way along the narrow strip of river bottom lands.

On leaving Verdi the railroad turns southwardup into the Trucke Canyon which soon becomes so narrow that there is not room for both railroad and wagon road, the latter diverging northward and crossing the range 10 miles or more farther north. The wagon road joins the
\(38085^{\circ}\)-Bull. 612-16-13
railroad again at 'Truckee. The rocks in the canyon walls are Tertiary lavas, mainly andesites, and for some distance the supposedly Cretaceous granite, or a related rock, appears beneath these lavas along the river gorge. It is not always possible at a distance to distinguish between these two classes of rocks.

A few mites beyond Verdi the train passes a post marking the Cali-fornia-Nevada State line, and about half a mile beyond it is a signboard and railroad siding marked Calvada, a name
Calvada, Cal. derived from those of the two States. This place is in a southward stretch of the canyon, so that the State line is crossed at a slight angle only a short distance west of the longitude of Verdi.

California, known as the Golden State, is next to the largest State in the Union. It is 780 miles in length and about 250 miles in average width, and has a total area of 156,092 square miles,

\section*{California.} being nearly equal in size to New England, New York, and Pemsylvania combined. The population of Califormia in 1910 was 2,377,549, or about one-tenth that of the Eastern States named. The area covered by public-land surveys is 123,910 square miles, or nearly 80 per cent of the State, and 21 per cent of the State was unappropriated and unreserved July 1, 1914.

Along the State's 1,000 miles of bold coast line there are comparatively few indentations. The bays of San Dicgo and San Francisco are excellent harbors, but they are exceptional.

The climate of California varies greatly from place to place. Along the coast in northern California it is moist and equable. Around San Francisco Bay a moderate rainfall is confined almost wholly to the winter, and the range in temperature is comparatively small. In parts of southern California typical desert conditions prevail. The great interior valley is characterized by moderate to scant winter rainfall and hot, dry summers. Snow rarely falls except on the high mountains, where-as, for example, in the Sierra Nevada-so much of it may accumulate as to interfere with railway traflic.

Forests cover 22 per cant of the State's area and have been estimated to contain 200,000 million feet of timber. They are notable for the large size of their trees, especially for the huge dimensions attained by two species of redwood-Sequoia washingtoniana (or gigantea), the well-known "big tree" of the Sierra Nevada, and Sequoia sempervirens, the "big tree" of the Coast Ranges. Some of these giant trees fortunately have been preserved by the Government or through private generosity against the attacks of the lumberman.

The 21 national forests in Califormia have a total net area of 40,600 square miles, or about one-fourth of the State's area. The national parks in the State are Yosemite (1,124 square miles), Sequoia
(252 square miles), and Genoral Cirant (1 square miles). 'The mational monuments in the State are the ('abrillo, ('imder Cone, lowil losppite, Lassen Peak, Muir Woods, and Pimateles, and there aro bird reserves at Klamath Lake, East P’ark, Famallon, and ('loar Lako.

Agriculture is a large industry in C'allifornia, and with the intorduction of more intemsive cultivation its mondane is increasing rapidly. In the varicty and valum of its fruit aron ('alifomia has no rival in the United States, il indered in the world. Its products range from pincapples and other semitropical fruits in the south to pears, peaches, and plums in the north, but it is to oranges and other eitrus fruits and to wine grapes hat ('aliforniat owes its agricultural supremacy. During the season from Nowember 1, 1913, to October 31, 1914, Galifornia produced 48,5ts ralloads of ritrus fruit, 42,473,000 gallons of wine, and 12,450 tons of walnuts and almonds.

Of its mineral products, petrolenm ramks first in total ralue and gold next. In 1914 California's output of petmolemm was valued at \(\$ 48,066,096\), about 25 per ecnt of the world's yicht, and its out put of gold at about \(\$ 21,000,000\). In the production of both petrolemm and gold California leads all other States in the ['nion.

California was formerly a part of Mexico but in 1818 wats ceded to the United States and on September 9, 1850, was admitted to the Union as a State. Its history is full of stirming and romantic episodes and should not be neglected by the risitor desirous of understamding the spirit of the land.

One of the power houses where electricity is anderated from the Sierra streams, an industry that has now reached great magnitude on both sides of the range, is seen in Truckee River near milepost 225. The ledges of volcanic rock exposed in the canyon in many bhafls and euts along the railroad present varied forms of laval, breccia (cemented fragments of voleanic material), and tufl or ash. 'The exposures are of many hues, light gray, rusty, purplish, mat greenish.

At Floriston is a pulp mill, situated near the souree of the wood from which the paper pulp is made. The wood is brought down from Hobart Mills by way of Truckee and nomply 100 cords

\section*{Floriston.}

Elevation 5,350 feet. Omaha 1,559 miles. of wood-four or five carloads-are used here daty. Floriston is in the narrowest and steepest part of the canyon. (See Pl. XLIV, A.) Reservoirs have been built in the river above the town to store water for doweloping power and for making ice in winter. No matmral ice is obtamed at lower elevations in Califormia, amb as the winters in the Nevada desert country are not very serere thick ice is ratrely formed there. Consequently an extensive business has grown up in the production
of ice on reservoirs built along the Sierra streams near the railroad. From this town onward many ice plants and storage houses will be observed, as ice cutting is the principal industry of many of the small places along the route. Iceland, a small station just beyond Floriston, has a name suggested by this industry.

Boca is an ice station and seems to consist principally of a picturesque little hotel and a store. It is the starting point of the Boca \& Loyalton Railroad, primarily a lumber road,

\section*{Boca.}

Elevation 5,534 feet. Omaha 1,565 miles. ruming north to Loyalton (26 miles) and thence to Portola (45 miles), where it comnects with the Western Pacific Railway. The canyon opens somewhat at Boca, and to the rear may be seen the high continuous crest of the Carson Range, just passed. West of the Carson Range and between it and the main summit of the Sierra there is a broad and relatively depressed area, the southern part of which is occupied by Lake Tahoe and the northern part by Sierra Valley. A belt of relatively low though mountainous country connects the basin of Lake Tahoe with Sierra Valley. This depressed belt, like the mountain scarps, is of structural origin. The area corresponds to a block bounded by faults, that has sunk or has been less uplifted than the adjacent ranges.

During the uplift of the Carson Range the upper portion of Truckee River was occasionally dammed to form a lake, but in the main the river kept its course by cutting down its channel across the hard rock as the mountains rose. West of Boca terraces built at formor higher levels of the stream channel are represented by benchlike remmants along the sides of the valley, but the unmistakable evidence of the damming of Truckee River is found in certain distinctly and evenly bedded or laminated deposits of clay, sand, and gravel, which are interpreted as laid down under standing water. A glance at the geologic map will show that these deposits spread over an extensive area west of the Carson Range. It is supposed that after the close of the andesite eruptions there followed a long period of erosion, during which Truckee Canyon was cut to very nearty its present depth. Then came a basalt eruption, covering large parts of the valley and damming the river afresh. The resulting Plestocene lake probally persisted during a large part of the glacial period, gradually diminishing in size as Truckee River cut down its outlet. Its beach gravels are found all around this upper Truckee basin.

Low terraces overflowed by basalt may be seen along the river, at one phace (milepost 214) showing a good illustration of columnar joint structure, which is a characteristic shrinkage phenomenon frequently exhibited loy such lava flows.

1. TRUCKEE RIVER CANYON NEAR FLORISTON, CAL

View of the narrower part of the canyon through the Carson cor front) Range of the Surta. Shows volcaric breccia in the ledges in the foreground and sparsely timbered lower slopes. Photorraph furnished hyy the Southern Pacific Co.

1). TRUCKEE, CAL., LOOKING EAST TOWARD THE CARSON RANGE.

View taken from the lower end of the glacial moraines found in Truckee Valley, the upper part of the town being built on the terrace-like surface. Photograph furnished by Southern Pacific Co.

\section*{LAKE TAHOE, CAL.}

Truckee River from Lake Tahoed down fo Powa 10 bewom is : favorite resort of fishormon in smmmer. ('amps and : immber if small hotels aflord shapping plase hat are maty reached from the (adifornial side of the mumatain:
 Emigrant (iap and 'rowle, oll the west side of the

\section*{Union Mill.}

Elovation 5,623 [cet. Omaha 1,568 miles. Sierra, lies in the Taboe National Forest.

Exposures of the thinty and reendarly bedded lake depmits mentinue and may be seen in ar at just west of Buc: How is a larem of white diatomaceous earth, which inelude fragments if loaves and stems and is believed to have been taid down in puid water.

Near the town of Trucke the valley hromdens cemsiderably and the river terraces beeme very distind. To the merth a bramel lmaner railroad climbs the edge of one of the terraces, expminge in depp ants loose white bodded gravels and other stremb depmits anmexpmoding in age to the Pleistocene lake beds observed lower down the range.

From Truckee, the last town passed on the rlimb fo fle summit, a narrow-gage railroad runs up the main river valley to Latw 'Tahooe

\section*{Truckee.}

Elevation 5,820 feel. Omahal 1,574 miles. (15) miles) and a shoed homber road groes morth in Hobart Mills, but the later does mot carty pastengers. There is much of interest from almost avery point of view to be seen in remsing the Siempa Nexalim, and many features of geology, physiograply, forestis, and history which ean here be only briefly noted. Beyond Truekee the evidenese of glacial action become apparent. The Sierrat down to an chevation of 5,000 feet was long buried under ice. The grimding ol this musing iere mass widened the bottoms of the camyons, smothed ofl and stoppomed their sides, and removed enormons amomes of lomse rowk and suil. To a large extent, however, the iee proterod from water ansum the area that it covered. Moraines composed of romgh and amgutar but not water-rounded bowlders of all sizes, mixed with fimes detritus and sand, were deposited by the ise lomges that prom jected down the valley, particulanly at their conds amb ahong thme sides. The lower valleys which the ire dicl mot reach differ in form from those that were glaciated. Bedow the graciated region the valleys are narrow and V-shaped in cross serem, hat the entaciatent valleys are broader amd \(U\)-shaped amd many wl them are chatactori\%nd by nearly level stretches occupiod ly mandows (filled-in lakes), separated by rocky portions of stereper grade. At Truchere lake beds and stream terraces of the lower riveronatse, the moneds of work by water, join moraines, the records of work hy ice. 'The 口मper pat of the town is built on the lowest identitiabla pertions of these elat cial deposits. (Sce Pl. XLIV, B.) The camyon of Trumen liiver between Truckee and Lake Tahoe has midmely new bernglaciated,
though the glaciers extended down the tributary valleys from the west, just reaching the river at one or two points.

To the traveler in the heat of summer there is probably no more refreshing and on the whole delightful side trip on the journey across the continent than that to Lake Tahoe. The trip to Lake Tahoe.

Elevation 6,225 feet. Trucke 15 miles. the lake is usually taken by the branch railroad from Truckee, but it may also be readily made by automobile. The railroad terminus is at the northwest side of the lake, where its waters overflow to form the head of Truckee River. From this point a circuit of the lake may be made by a small steamer, the trip occupying most of a day. The steamer stops at many summer camps, hotels, and permanent settlements. During the winter most of the resorts are closed, as the snowfall is heavy at this elevation.

Lake Tahoe is not a natural wonder, as that term is applied to the Yellowstone or the Grand Canyon, but the lover of nature can probably get no truer satisfaction than can be had from a quiet and restful sojourn along its beautiful shores. (See Pl. XLV.) There is much in the history of its origin and that of the ranges surrounding it that is full of interest.

The lake is \(21 \frac{1}{2}\) miles long from north to south and about 12 miles in its greatest wilth. Its surface, which stands 6,225 feet above sea level, covers 190 square miles. The water is of unusual depth, Crater Lake, in Oregon, being said to be the only deeper mountain lake in America. A sounding of 1,635 feet was obtained a short distance south of Ilot Springs, in what is perhaps the deepest part, but the contour of the bottom is not accurately known. According to a generally accepted statement this lake never freezes over in winter, probahly on account of its great depth. The mountains around the lake rise abruptly and culminate in Mount Rose, in the Carson Range, at 10,800 feet. It has already been noted that the Sierra Nevada is here a double range of almost parallel north-south ridges and that the lake lies in a part of the depression between the two. The mountains of the Carson Range, east of the lake, though they do not seem unusually high or rugged as viewed from the lake, present an exceedingly bold escarpment when viewed from the Nerada side. The momitains to the west form the main watershed between the streams flowing to the Pacific and those flowing to the Great Basin. Near Tahoe the peaks on this divide do not attain so great a height as those of the Carson Range, but farther south the main Sierra becomes higher and culminates in Mount Whitney (14,502 feet).

One of the chief beauties of Lake Tahoe lies in the clearness and purity of its water and its wonderful coloring, varying from the deep hlue of the main lake on a clear day to the crystal green of Emerald Bay. The lake abounds in fish, which include several species of trout. Shoals of the smaller fish may be seen from boats or along
the shore and may be watched even at comsiderahle depth through the clear water as they dart oner the bowlder-strewn botom.

There is a dam and headgate at the outlet into Truckee River by which the lake level is raised a few feet during the spring, the surplus water being released during the dry seasom, when it is most needed for maintaining a full flow at the power pland betow and for irrigation in Nevada.

The statement sometimes made that "Tahoe is an ohd rolcanic crater" is not true. The region about the lake shows evidences of volcanic activity of varions kinds, and the lake waters themselves have probably been dammed at times by outpourings of tava. A lava flow appears to have temporarily filled the outlet chamel below Tahoe City. The lake, however, lies in astrutural depression-a dropped block of the earth's crust.

During the Neocenc epoch and the carlich part of the Pleistocene epoch the waters of Lake Tahoe stood much higher than now, probably on account of lava dams which have since been cut through. Distinct beaches that mark former higher levels are found up to about 100 feet above the present lake, but it is believed that the waters formerly rose to still greater heights. At Tahoe (ity the most distinet of these old beaches is a terrace 35 to 40 feet alhove the level of the lake, and it is this terrace that makes the level gromel on which Tahoe Tavern is built. Similar terrace levels may be distinguished from point to point almost all the way arouml the lake. (See Pl. XLVI.)

West of Truckee the main line of the railroad follows Truckee River for a little over a mile to the month of Domer (reek and then runs up along the south side of the broad glaciated valley of that strem. Here morainal deposits and forms characteristic of glaciation are conspicuous. Huge howlders of granite, brought here on the moving ice during the glacial epoch, strew the surface on all sides.

At milepost 206, by looking acrosis Domer (reek, the traveler may see a large white cross at the forward enge of a low terrace on the opposite side of the valley. This is a momment to the Donner party, whose tragic story is told at length in most of the histories of early California emigrations. About half a mile above this cross, in the woods near the lower end of Domner Lake, is a cule of armite inseribed as follows:

This stone marks the site of the Donner party rabins, where a momument will be erected under the auspices of the N.S.C. W. W. |Native sons of the Golden West to the pioneers who crossed the plains.

Donner Lake and the pass now used hy the railroad are particularly dentified with one of the emigrations that preceded the great gold rush to California in 1849. Of these carlier emigrations to the Pacifie coast there were two. The first was that to Oregon in 1843, during
which some parties turned off and entered California, guided along Humboldt River by the renowned mountanneer, Joe Walker. The second was that to California in 1846 during hostilities between the United States and Mexico. Bancroft says:
These adventurers were assured that California was a most delight ful country-one every way desirable to settle in; that it was thinly peopled and except along the seaboard almost unoccupied; and that now the Nation was roused to arms, engaged in a hand to haud conflict with the weaker power, it would probally result in the acquisition of all that territory by the stronger. * * * The result proved as had been anticipated; scarcely had the emigrants of 1846 arrived in the valley of California when the whole magnificent domain fell a prize into the lap of the United States.

It was during the second of these migrations that the Donner tragedy \({ }^{1}\) occurred.

\footnotetext{
\({ }^{1}\) In the spring of 1846 some \(2,000 \mathrm{emi}\) grants were gathered at Independence, Mo., waiting for the grass of the plains to attain sufficient growth for feed for their cattle before commencing the long journey to the Pacific coast. Some of these were bound for Oregon and the rest for California. Among the parties that were finally formed for the journey was one known as the Donner, or Reed and Donner party. It consisted of the brothers George and Jacob Domner and their families and others, making in all about 88 persons; 24 were men. 15 women, and 43 children. It was a well-equipped party, and George Domner, a man of some wealth, who was at its head, was carrying a stock of merchandise for sale in California. For a time all went well. Most of the emigrants of those days followed the Oregon Trail northward as far as Fort Hall, Idaho, and then, turning sonthwest, crossed to Humboldt River in Nevada and so went west to the Sierra. At Fort Bridger, Wyo., however, the party met a man whose advice was to cause their ruin. Lansford W. Hastings, who had led a party of emigrants arross to Oregon in 1842 and had returned and pub)lished a gnide to Oregon and California, now claimed to have discovered a shorter route which would save 200 miles over the old route by Fort Hall. After deliberating several days the emigrants divided. The greater part, going ly Fort LIall, reached California in safety, but the Domer party, who had elected George Domer captain, decided to try
the Hastings cut-off. Both parties left Fort Bridger on July 28.

At the start the Donner party followed approximately the present route of the Union Pacific Railroad and had little difficulty until they rearhed Weber Canyon, where the roads seemed impassable for wagons. Making a detour to avoid this canyon, they did not reach Salt Lake until September 1. From September 9 to 14 the party were crossing Salt Lake desert, going around the south end of the lake loy the ronte which is approximately that of the Western Pacific Railway today. Here disaster began to overtake them. Some of the oxen died of thirst, a part of the wagons and goods had to be abandoned, and some of the party were forced to walk. Rations were short and the first snows of the season commenced. The cattle were attacked and stolen by Indians and the situation gradually became desperate. Slowly they made their way westward across Nerada.

On October 19 the starving emigrants met a relief party with some provisions at the lower crossing of Truckee River (site of Wadsworth). After resting a few days the party proceeded up hy Truckee Meadows (Reno) and finally, on October31, reached the vicinity of Truckee. Here the winter snows overtook them. On December 16 some of the party attempted to escape by rrossing the summit on snowshoes. A few succeeded in reaching Sacramento and told of the plight of their companions. When the rescue parties reached Donner Lake they found that 36 of the 81 who had camped at the lake had perished.
}

CAVE ROCK, LAKE TAHOE, NEV.
The banch in the foreround is a romnant of a form rfirior shore and is now utizedty the road that passes around this side of the lake to Glerk. .k ard ther e ow. the reng

A. DONNER LAKE.

Glaciated ledge of granite in the foreground. Photograph furnished by Southern Pacific Co.

13. DESOLATION VALLEY, NEAR LAKE TAHOE,

Characteristic vicw of the hizher Sierra evon in midsummer. The bare and more or less rounded surfaces of the rock ledtes trastify to the scouring action of the ice that has moved over them. Photograph furnished by Southern Paciíc Co.

Just beyond the bomer crose and before the first sumwheds are entered, a bit of the lower end of Domore Lake may be sem he looking through the trees up the valley ahead. From this point the train turns southwestward, going up one side of the valley of Codd Creok, and then doubles back again, still dimbing, of the other side. As the train rounds the loop in Cold (remk vatley the rear platform affords a view of the Sierta crest, contminating in Tinker Kint (9,020 feet), only 2 or 3 miles distant. Alomer the north side of (bhll (beek the snowsheds are almost comtinuons. They extemf from this valley along about 40 miles of the railroad, the last shed beeneg just beyond Blue Canyon, on the west slope. It is unforimate that no satisfactory plan has yet been tevised to protect the tracks from show without marring the most beautiful part of the route wer the mountains.

Rounding the point of the ridge at the lift (unerth) and passing through a eurred tumel, the train comes out just abowe Domer Lake. The basin of this beautiful momatan lake is apparently of glacial origin, as the water occupies a howlow, evitently ones filted by a glacier, with bare granite cliffs at its upper ond and a heary terminal moraine at its lower end. This morane hodds bark the water of the present lake, but the basin is beliewed to hatre been originally dammed lower down by flows of hasaltic lava which spread across the ralley just west of Trucker and theough which Domer River subsequently cut its way. Noar the head of Dommer Lake the train runs back into another southward loop and, arosing some heary deposits of morainal debris, comes wut abowe the upprer end of Donner Lake. (See Pl. XLJII, A.) From this point it is but little more than a mile to the long tumnel thromgh granite by which the crest is pierced.

Domner Pass, the highest point along the railrond, is just above the tunnel. The elevation of the tumel is \(\overline{6}, 012\) fret: the pass above the tumel is of course somewhat higher. Just be-

\section*{Summit.}

Omaha 1,589 miles. yond the tumel is a flag stop kown as Summit Hotel, and half a mule or so farther is the station in the snowsheds called Summit. Nthough it is difficult to see out of the snowsheds, glimpses to the south discluse the west side of the main Sierra crest, usually with at least a few show patches throughout the summer. The 150 -mile trip from Sacramenten to this point, a climb of nearly 7,000 feet, and down the east side of the range into Nerada is mentioned in the Saeramento papers in the unimpassioned phrase "going over the hill." And yet they say that the westermer exaggerates.

The amual precipitation is very high orer the west shope, ranging from a mean of 52 inches at Ciseo, at about 6.000 fred, to the inches at

Summit, 1,000 feet ligher. \({ }^{1}\). It the higher elevations a large proportion of this precipitation is snow, as it rarely rains much during the summer. Near the summit the snow may accumulate to a depth of 20 feet on the level during a single winter. (See Pl. XLVII, B.)

On the west slope of the range, between the elevations of 6,000 and 7,500 feet, is the great Sierra forest zone, although the full grandeur of the forest is not displayed along this particular route. A note on the principal trees to be seen between the summit of the Sierra and San Franciseo Bay has been kindly supplied by Prof. W. L. Jepson, of the University of California. \({ }^{2}\)

\begin{abstract}
\({ }^{1}\) The mean annual precipitation at several plares along the route is shown by the following table compiled from records of the United States Weather Burean extending over periods of 30 years or more:
\end{abstract}

Merm precipitation on Sierra slopes along lime of Southern I'acifie Pialroal.

Inches.
Reno, Nev........ S. 6. 5
Bora, ('al.................. 20. 84
Trutker, Cal............................... 27. 12
Summit, Cal......................... . . 48.07
(isco, ('al............ 52. 02
Blue C:myon, Cial................... . . 74.22
Towle, Cal............................. . . . 5. 38
Colfax, Cal............................ . . 48.94
Auburı, Cal.......................... 35. 13
Sarramento, Cal...................... . 19. 40
\({ }^{2}\) At the summit of the Sierrat are fond :
Joffrey pine (limus jeffreyi), a near relative of the yellow pine having a red, rusty, or wine-colored bark and a large come suggestive by its outline of an oldfashioned berhive.

Whitebark pine (I'inus albicaulis), a timber-line dree, dwaried and often prostrate, commonly associated with the Jeffrey pine.

Tamrac pine (Pimus contorta var. murretumu), fonme (hiefly at the higher altitules and especially aboudant in swampy meadows, lut grows also on the granite ridges and is frequently a timber-line frer. It is characterized by its short foliage consisting of two needles in a place and by its small burrlike cones. This treer is not the eastern 1amarack.

Western juniper (Jumiperus occidentalis), a very dhararteristic tree of granite ridges and iliffs.

On the middle western slope the four prevailing species, which can probably le recognized from the train, are:

Yellow pine (Pinus ponderosa), the dominant tree of the Sierra forest belt and on the average the largest tree, except the big tree (Sequoia washingtoniana or gigantea), which is not of general occurrence. The yollow pine is distinguished by its yollow bark, which is checked into large plates 1 to 3 feet long and 6 inches to 1 or \(\therefore\) feet wide, slightly resembling the back of an alligator. The cones are ovoid and about 3 to 5 inches long.

Sugar pine (Pimus lambertiana), usually atsociated with the yellow pine, occurs in the main forest belt; distinguished by its finely checked bark, ly its cones 12 to 16 inches long, and by the very noticeable feature that the branches in the very top run ont into a few unequal horizontal arms.

Incense cedar (Libocedrus decurrens), the only cedar-like tree at middle altitudes; has a reddish fibrous bark and for that reason is somotimes mistaken for the Sequola by the amateur.

White fir (Abies concolor), a common tree on the lower slopes below the main summit, mostly associated with the yellow pine. These trees will probably attract attention lecause of the beartiful symmetry of their crowns, gently tapering to a pointed top. Their branches expand horizontally and impart a stratified or layered appearance to the crown. On the higher slopes of the Sierran axis this species is replaced by the red fir, which is similar in appearance but has a reddish instead of a whitish bark.

For about 2 miles from the smmin the rombe follows ant uphand meadow, undoubtedly of entacial migin, Har lown (and of whin is mow

\section*{Soda Springs.}

Elevation 6,742 feot. Omaha 1,592 miles. submerged in a reservoir ealled Lathr Van Xoden, after a family of castorn rapitalisk who hater faken a prominent part in the water-storage, wator-supply, and hydroeledric pewer deselopmenti thal hatre heen so largely extended in the Siemat during the last few yars. The mountain streams thus utilized supply light and power throughout much of Califormia and Nevada.'

Below Soda Springs (see sheet \(2: 3\), , 214) the railrmal follows the south side of the upper valley of South Fork of Yuba River, a typiral glacially scoured ralley, its broad and smoothly rounded bothom worn down to bare granite. Along the sides of the valley is scathered mome or less morainal débris.

An especially noticeable feature of the western shope of the siorra Nevada is the general eremess of itssky line. In ans •xtensive vinw it is not difficult to overlook the deep camyons amd inatinn moredp looking over a great forested plain sloping genlly weswarl. The ridges between the canyons are in fact remmants of a fommer surfaco of

In the forthills there occur:
Digger pine (Pimus sabiniana), a lightgray dusty long-needle pine, having a foliage so thin that it scarcely casts a shadow. It has a large, heavy cone and is sometimes known as bull pine.

Blue oak (Quercus douglasii), almost always associated with Digger pine, recognizable by its white trunks and bluish foliage.

In the Sacramento Valley the scattered oaks and groves are composed of:

Interior live oak (Quercus wislizenii), a symmetrical evergreen tree, frequently with a hemispherical top, set low to tho ground.

Valley oak (Quereus lobata), a deciduons tree which is taller than the live oak and has long, drooping, cordlike lramehlets pendant from the great crown.

Near San Francisen Bay the interion live oak is replaced by the coast live oak (Quercus agrifolia), oi similar :upearane. A marked frature of coast Range scemery is the considerable groves of the eualyptus, an introduced tree, various speciss of which have been set out in this commer within the last 30 of 35 years. They come mostly from Australia. Of the
many sperios porbably lat atr mow ropro resentert in 1lar Statr. 'They atre raplid growers ame prochace exomedingly latrl Wrorl, which is diflioult forme for nlilization as lumber hat whieh is of vory grat strengly whon it rath hornory soasomed.

1 There are in valiforniat ithond \(\overline{-5}\), loveloped hyphoelororic power jlatits, most of which, inclucliner hat laterost, are in the Sierraz. Aloner fher ronte witao

 tric. ('u., which fonsist of at xyshom oi
 honses bor the wilization of tho fow wi Yuba and Eatar rivers. Mose wi ble structures visibla from Ilar railmath, as at Take Van Korden amil in the virinity of fonax, have been buila in comerem with the recenty completed lomm plam, Which hats an ultimate calmacily of towot
 further utilization of the pewer of lear liver will involve the emstruction of
 from lake spalding to Nowrastle, the total power capacity of the complated

low relief. By the elevation and westward tilting of this surface the Sicrra Nevada was formed.

The rocks near the summit are principally granite (or granodiorite), \({ }^{1}\) lavas (andesite, rhyolite, and basalt), tuffs, and breccias. The volcanic rocks geucrally cap the ridges, the canyons being cut through them into granite or into sedimentary rocks which have been invaded by the granite. In general, throughout the western slope of the Sierra Nevada, the lavas, the associated gold-bearing gravels, and the other Tertiary rocks lie nearly horizontal on the worn surface or eroded edges of a much older tilted set of rocks. These older rocks comprise altered sediments, such as slates and schists, altered lavas and tuffs, in part rendered slaty or schistose by pressure, and intruded igneous masses. The various sedimentary formations are not readily distinguishable from one another from the train. The most widespread and characteristic are the Calaveras formation, of Carboniferous age, and the Mariposa slate, of Jurassic age. Both consist chiefly of slaty rocks, although the Calaveras is less uniform than the Mariposa and contains some limestone. The dip of the older rocks varies, especially near intrusive masses, but in general it is \(60^{\circ}\) to \(70^{\circ} \mathrm{E}\).

Near Cisco the older sedimentary formations of the Sierra begin to take the place of the granite and volcanic rocks. North of the railroad, on the summit of a high ridge known as Sig-

\section*{Cisco.}

Elevation 5,940 feet. Omaha 1 ,fol 2 miles. nal Peak, the railroad company maintains a lookout station, from which a watch is kept for fires in the suowsheds, many miles of which are in view from this one point. The ridge on which the signal station is situated is composed of metamorphosed slates (Sailor Canyon formation) of Triassic age, like those that occur at Cisco. The brown talus from these slates is in decided contrast with the white granite outcrops previously passed.

Cisco is an old railroad-construction eamp, now a small settlement for the railroad employees. Here also is a summer hotel and camp. In the valley of the South Fork of the Yuba below the railroad, on the right, is a favorite summer automobile road which crosses the Sierra and forms a section of the recently named Lincoln Highway.

There are openings in the snowsheds here and there at bridges and at places where one part of the shed is made to telescope into another, being mounted on wheels for that purpose. These tele-

\footnotetext{
\({ }^{1}\) The granorliorite of the Sierra Nevada is an enommons mass of intrusive rock only partly bared by erosion. Such a mass that extemis to unknown depth is called by geologists a bathotith. The batholith of the Sierra Nevada is merely one mem-
}
ber of a chain that comprises many such masses, which extend along the western coast of North America. These immense bodies of igneous rock were intruded in late Jurassic or (retaceous time and may all be commected at great depth.
scoping sections are rolled back in summer, ats a precration agrainst the spread of fires. (rystal Lake (elevation 5, 75s feet), I'uba Pats (\(5,614 \mathrm{fect}\)), and Smart (\(5,351 \mathrm{feet}\)) are unimpertant stations in the snowsheds. The block-signal system in use on this part of the romd is interesting, and an account of it may be obtained by conversing with those who are socially inclined among the railrond erews.

Just beyond Smart, near milepost 173 , a glimpac forward on the right shows the South Fork of Yiuba River in its now rapidly deepening valley far below. The river here turns sharply noth

Emigrant Gap.
Elevation 5,225 feet. Omaha 1,610 miles. and immediately disappears into a very marrow and deep rocky gorge. This is a striking example of what is known among physiographers as stream caphure. The part of the river already passed is the fomer headward portion of Bear River, which now rises near this peint and flows southwestward through a smooth, grassy gap, known as Emigrant Gap. Another stream on the north, the original south Fork of the Yuba, working backward at its head in the maner common to streams, cut its canyon faster and deeper than that of the anciont Bear River was cut and finally worked back into the Bear River valley and, tapping that stream, drained off its water through the narrow canyon to the north. (See fig. 17, on sheet 23, p. 214.) The present Bear River approaches within a quarter of a mile of the railroad just beyond Gold Run. The evidence of this interesting bit of ancient river history remains in view but momentarily, for the railroad plunges through a short tumel and emerges on the opposite side of the ridge, in one of the upper tributary valleys of the American River system.

Emigrant Gap is the first station on the descent which suggests a surrounding agricultural or fruit-raising country. The railroad cuts expose slates and micaceous schists (Calaveras formation) which belong to the Carbonifcrous system. Here may be noted a change from the upper region where glaciers have scoured the rocks clean of all loose material to the lower region where a mantle of soil and disintegrated rock gives better opportunity for forest growth.

The station of Blue Canyon is situated on the timbered hillside in a deep reentrant curve of the railroad, which is here high above the North Fork of American River, near the crest of one

\section*{Blue Canyon.}

Elevation 4,701 feet. Omaha 1,615 miles. of the characteristic flat-topped, lava-capped ridges of the mid-Sierra slope. (Sce Pl. XLIŇ, P, p. 207.) The last of the snowsheds is near at hand. Beyond them, as the road winds in and out on the mountain side, distant views bring out with great distinctness the evenness of the sky line that is significant of the smoothesss of the older (early Tortiary) topographic surface by whose uplift and westward tilting in late Tertiary time the Sierra Nevada came into being as a mountain
range. The depth to which the modern river canyons have been cut below this surface is an index of the amount of crosion that has been accomplished since this uplift. The old plateau surface has been deeply dissected, but it is yet far from being destroyed. The stream chammels are considered as still in the "youthful" stages of their development. When they attain "maturity," perhaps thousands of yeurs from now, the ridges between them will have been worn down to low, rounded divides, and the streans themselves, instead of roaring through rocky canyons, will glide in leisurely meanders through broad green meadows. The canyons are thus evidence of the geologic recency of the elevation of the Sierra Nevada.

Beyond Blue Canyon the train skirts a thickly wooded steep slope, above the gradually deepening canyon of Blue Creek. This part of the railroad follows closely the bottom of the lava that caps the ridge, the canyon below being cut in the slaty rocks of the Calaveras formation. The main cap rock of the ridge is andesitic tuff-breccia. Under this in places is some lighter-colored rhyolite tuff. For a while there are few distant outlooks. The hillsides are, for the most part, thickly covered with small timber and underbrush, which is evidently second growth, the original forest having been destroyed long ago by lumbering or hy forest fires. At Forebay (milepost 162), which is a sidetrack and water station, there is again a partial view across the canyou to the distant level sky line. West of this are several deep cuts along the railroad, showing the character of the deposits that were formerly spread out over the old plateau surface, composed largely of fragmental volcanic materials ranging from fine tuff to coarse blocks of lava. (See Pl. XLVIII, B.) Just beyond Midas (elevation 4,142 feet, milepost 161) appears a seemingly almost sheer drop into the deep gorge of the North Fork of American River, here 2,000 feet below the track. The evemness of the ridge tops to the south, due largely to the fact that they are capped with volcanic rocks, chiefly andesite tuff-breccia, is again clearly apparent. Beyond Gorge station (elevation 3,904 feet) the railroad again skirts the 2,000 -foot gorge, just above a constriction in the canyon known as Giant Gap, also as Lovers Leap. The canyon is narrow here because it cuts arross a belt of altered igneous rock (amphibolite) that is harder than the slates above it. The railroad here turns northward through a little gap in the ridge into a small upland valley. The rock in the gap itself is white rhyolite tuff, but above and below the gap the railroad crosses some serpentine (an altered magnesian igneous rock) which is a part of a north-south belt of this rock that extends along this part of the Sierra slope.

A. VIEW OF TERTIARY GOLD-GRAVEL DEPOSITS BETWEEN GOLD FUN AND DUTCH FLAT LOOKING BACK OVER THE GOLD GRAVELS FROM GOLD RUN.
Note the llume in which water is conducted, formerly used in the washings but now employed for irrigation.

b. VIEW IN A RAILROAD CUT BETWEEN FOREBAY AND MIDAS.

Shows the character of the deposits laid down over the old plateau surface, which, now uplifted and tilted to the west, forms the west side of the Sierra. The cut exposes rounded stream bowlders, course angular blocks cf lava, and layers of finer volcanic ash and sediment.

A. VIEW DOWN CANYON OF NORTH FORK OF AMERICAN RIVER FROM CAPE HORN, CAL.

The even sky line in the distance represents the former surface by whose elevation and western tilting the Sierra Nevada was brought into existence. Photograph furnished by Southern Pacific Co.

2. BLUE CANYON, CAL

At Towle are some of the higher orehards of the Siema, and here again, close at hand, is the Lincoln Highwiy. In the words hereabouts are summer camps and smatl hotels. In the

\section*{Towle.}

Elevation 3,692 feel. Omaha 1,623 miles. bed of the litte stream just below the railroad stat tion on the left have lately been foumd seme magesite (a cablonate of magnesimm) and also somme asterstos. So far as known the deposits are not of sulficinat extent to be of value. They oecur with the serpentine, the usinal assoriation for magnesite deposits. Dark ledges of amphibolite (the same belt that onecurs at Giant Gap) and of serpentine show along the railroad.

Just below Towle is a railroad cut in some of the white roleanic tuff (rhyolitic) already refered to as oremring below the andesite tuff-brectia. These vokeanic deposits are mere rem-

Alta.
Elevation 3,602 feot. Omaha 1,624 miles. nants, and once extemded arross the areats now oreupied by the canyons. The andesita tuff-breceia particularly covered enormons areas of the went shope of the Sierra before that slope was tilted by earth movements and rat into by the streams. At Alta are summer camps and a samitarimn. The surrounding country is rather thickly timbered, but there are clearings planted as orchards or cultivated in other ways.

Just beyond Alta is a sidetrack where round bowders of white quartz, obtained from the old gold diggings a short distances away, are shipped. These bowhers are used in the furnaces of the railroad repair shops at Sacramento. They come from a placer mine which is called Nary-a-Red, referring to the absence of the usual red bowlders in these gravels. The pure white cobbles remain behind after the finer materials have been washed away by the hydratule method of mining for gold.

Beyond a bend on the morth side of the ridge the town of Dutch Flat, almost surrounded by the great pits made by hydraulic wash-

\section*{Dutch Flat.}

Elevation 3,399 feet. Omaha 1,626 miles. ing for gold, comes into view a short distance away from and below the railroad. The railroad station of the same name is ahout a mile south of the town, at a former settlement of Chinese miners that was known as Chinatown. Here the view from the ratroad embraces a region that was prominent in the carly mining days of Catifornia for its yield of placer gold. The gold of Dutch Flat rame chicfly from the upper or bench gravels, deposited by the rivers of Tertiary time \({ }^{1}\) and now high above the present streams. Hydraulic

\footnotetext{
\({ }^{1}\) The Tertiary streams that flowed down the western slope of the Sierra orcupied wider valleys than the present ones and accumulated extensive deposits of gold-bearing gravels along their channels. These gravels were later covered by lavas
}
and flows of stony mud (tuff-brercria) erupted from volanoes near or east of the present summit. When the grade of the slope was increased by the tilting of the range in later Tertiary time the rivers eut new canyons, and many of the old chan-
mining, in which the gravel is attacked by powerful jets of water, is no longer in progress near Dutch Flat, partly because the rich parts of the deposits have been worked out but chiefly because laws enacted for the protection of the agriculturists along the lower courses of the rivers prohibit the washing of silt and sand and other mining débris into the streams. The general character of these old hydraulic workings ean be well seen from the railroad.
The historically important discovery of gold in California was made in January, 1848, at John Sutter's mill on South Fork of American River near Coloma, a point only 10 or 15 miles southeast of the town of Auburn, through which the train will soon pass. From 1850 to 1853 the greatest yield was derived from the gravels, and the largest annual output for this period was more than \(\$ 65,000,000\), in 1852. There was some reaction in 1854, due to previous wild speculation, but a production of about \(\$ 50,000,000\) a year, chiefly from placer mines, was maintained up to 1861 .

At first the gold was won chiefly from the gravels along the present streams. Those who first got possession of the rich bars on American, Yuba, Feather, and Stanislaus rivers and some of the smaller streams in the heart of the gold region made at times from \(\$ 1,000\) to \(\$ 5,000\) a day. In \(1848 \$ 500\) to \(\$ 700\) a day was not unusual luck; but, on the other hand, the income of the great majority of miners was certainly far less than that of men who seriously devoted themselves to trade or even to common labor.
nels with their lavat caps now lie on the ridges. (See fig. 18.)

Of interest in connection with the Tertiary river gravels is the story of the Calaveras skull. For a time this skull attracted much attention not only from people in California, but from scientific
that man had been in existence in North America very much longer than had been supposed. Strange to say, the skull is of a higher type than skulls which, although known to antedate historic times, are known also to be much younger than the Tertiary. Although Prof. J. D. Whit-

Figure 1s.-Diagram showing the present relation of the Tertiary auriferous gravels to bedrock and lavas, also the position of the gravel remmants high on the ridge summits.
men the world over. It was reported to have been foumd in 1866, near the town of Angels, Calaveras County, at a depth of 130 feet, in Tertiary gold-bearing gravels underlying Tertiary lava. The finding of a human skull embedded in such deposits was for a time believed to indicate
ney, then State geologist, accepted the skull as a bit of genuine scientific evidence, it is generally believed by students of the antiquity of man that the Calaveras skull, while undoubtedly old, probably did not come from the auriferous gravels at all.

The gold pan, the "rocker," the "tom," the sluice, and the hydraulic "giant" or "monitor," named in the order of increasing efficiency, were the tools suceessively used by the miners. Into the "rocker" and the "tom" the miner shoveled gravel or "dirt," rocking the machine as he poured in water and catching the gold, often with the aid of quicksilver, on riffles set across the bottom of his box. Sometimes a stream was diverted into a flume to lay bare the gravel in its bed so that the miner could get at it. In sluicing, the gravel was shoveled into a similar but much longer box through which a stream of water was allowed to run. The hydraulic giant was employed to wash into long riffle-set sluices immense quantities of gravel, especially from the higher (Tertiary) deposits, much of which was too lean to work out by hand. Water was brought for many miles in ditches and flumes from the high Sierra and conducted under great head to a nozzle from which it was projected with tremendous force against the gravel. It was the vast quantity of refuse washed into the streams by these hydraulic operations that brought about the conflict between mining and agricultural interests, finally decided in faver of the farmers. Of late years the gold obtained from quartz veins in California has exceeded that won by placer mining.

Half a mile beyond Dutch Flat station the railroad track rests on Tertiary gold-bearing gravel, the right of way having been preserved from attack by the miners. (See Pl. XLVIII, A.) The lower part of the gravel under the railroad is said to be worth about \(\$ 8\) a cubic yard, and it is worthy of note that elsewhere gravels yielding only \(\$ 1\) or \(\$ 2\) a yard are now being worked with profit by tunneling or drifting. The bedrock on which the gravels at Dutch Flat rest is a dark-green, somewhat altered intrusive igneous rock (gabbro).

Just beyond the hydraulic washings is Gold Run, which like Dutch Flat was formerly a flourishing placer town. Beyond Gold Run the

\section*{Gold Run.}

Elevation 3,224 feet. Omaha 1,628 miles. railroad for about 6 miles crosses a north-south belt of slate or slaty sehist of Carboniferous age (Calaveras formation). These rocks are cut by dikes of dark, altered igneous rock (amphibolite). Patches of Tertiary lavas, outlying remnants of the former plateau surface, cap the highest hills along the summit of the ridge near this part of the route. On the right is Bear River, already mentioned as having lost its original upper portion, above Emigrant Gap, through capture by the South Fork of the Yuba.

Magra (elevation 2,899 feet), Cape Horn (2,656 feet), and Wirt (2,442 feet) are unimportant stations. From a point near milepost 148 can be seen placer pits at Iowa Hill and Michigan Bluff, high on the ridges across the canyon of the North Fork of American River,
far away to the southeast. These places, busy mining centers of the early days, are now quiet little back-country settlements.

Just beyond Cape Horn station the train turns south along the side of a wooded ridge and suddenly, at the south end of the ridge, rounds a point known as Cape Horn. Until this year (1915) the road skirted the point at the summit of a precipice 1,500 feet above the North Fork of American River, which afforded the superb canyon riew shown in Plate XLIX, A. Now the old line "around Cape Horn" has been abandoned, and railroad traffic goes through double tunnels built to climinate what had seemed like a dangerous curve around the point. Turning back along the other side of the spur, the railroad crosses a deep ravine up which runs the narrow-gage road from Colfax to Grass Talley and Nevada City. This ravine, which opens on the North Fork of American River, is cut in slate of Jurassic age (Mariposa slate). This formation and some of the altered slaty or schistose volcanic rocks associated with it (amphibolite schist, grecnstone, etc.) contain some of the principal goldbearing quartz veins of Califormia, including the series of veins known as the Mother Lode. \({ }^{1}\)
\({ }^{1}\) The Mother Lode, so called hecause the early miners imagined it had some sort of ancestral relation to smaller lorles, extends from the virinity of the Middle Fork of American River southward for fully 120 miles, past the towns of Placerville, Amador, Sutter Creek, Jackson. San Andreas, Angels, Jamestown, Jarksonville, Coulterville, and Mariposa. It is not, as the name implies, a single great vein, but a remarkable linear system of closely parallel and overlapping reins, some of which are many miles in length. The lode has the same general trend as the belts of slaty or schistose rock that are characteristic of the Weetern mid-sierra slope and follows in the main a very persistent belt of Mariposa slate, although it is not confiner to that formation. In places the Mother Lode reins are in altered shlistose igneous rocks (amphilolite schist or greenstone schis1), in slaty rocks of the Calareras furmation, or even in serpentine.

The slaty rocks of the Mother Lode region generally dip \(60^{\circ}\) to \(55^{\circ} \mathrm{E}\)., and most of the reins are a little less steeply inclined than the rocks in their vicinity. The veins consist chiefly of quartz carry-
ing free gold, auriferous pyrite, and other minerals that are less constantly or less alsumdantly present. They were deposited in early Cretaceous time by hot waters frobably given off, in part at least, by deep-lying, slowly cooling masses of granite (granodiorite).

A few of the principal mines along the Mother Lode are the Plymouth, Fremont, Bunker Hill, Original Amador, Kevstone, Lincoln, Wildman-Mahoney, Eureka, Amador, Central Eureka, South Eureka, Oneida, Kennedy, Argonaut, Zeila, Gwin, Gold Clifi, Lightner, Utita, Melones, Rawhide, Dutch, App, Eagle-Shawmut, and Princeton. Not all of these are now active. The deepest mine and one of the fnost productive is the Kennedy, which has a vertical shaft 4,000 feet deep.

The ore of the Mother Lode is treated in stamp mills, and the gold is recovered partly by amalgamation and partly by concentration and cyanidation of the prrite and other sulphides present. The gold quartz mines of California produce annually gold valued at from \(\$ 10,000,000\) to \(\$ 12,000.000\). The greater part of this comes from the mines along the Mother Lode.

Berond the ravine is Colfan, first known as illimeistown but later renamed for Vice President Colfan. The Contral Pacific Railway, being built up from the Sacramento Vallery, reached

\section*{Colfax.}

Elevalion 2, 422 feet. l'opulat ion 621. Omaha 1,639 miles. this place on September 1, 1865. The Neradal Comety Narrow Gage Railroad rums from Colfan to the important mining districts of (iras Valley amd Vovada City, where there are many lode mine that have long been productive. \({ }^{1}\)

After leaving Colfax the train pareos through shallow cuts in yollow soil derived from the deep deray of the Jurasio slates. The road continues the descent along a ridge between canrons, although the traveler will hardly recognize this fact without reference to the map. The upper slopes near the railroad have been largely cheared of timber and are now covered with a donse underhmoh, including manzanita, \({ }^{2}\) scrub oak, and other shrubs and dwarf trees. The durassic rocks in some places carry a few distinctive lossit, but the numerous outcrops of slate as seen from the train do not look very different from the rocks of Carboniferons age (Calareras) that oecur cast of Cape Horn.

About 2 miles below Colfax the tracks separate. the westhound route turning off to the north side of the ridge. From this point to Rocklin the two lines are in general some distance apart, although here and there they run together and at two places even cross each other. The older line, used by the westhound trains, affords the better riews, as the newer, more miformly graded track passes through deep cuts and many tumels.

Lander (eleration 2,2s2 feet), New England Mills or Weimar (2,278 feet), and Applegate are all small settlements along the route.

\footnotetext{
\({ }^{1}\) The Nevada City-Grass Valley district is second only to the much larger Mother Lode district as a source of vein gold in Caliornia, and probably nowhere else in the State has there been so great a concentration of gold in a small area. The veins occur in many kinds of rock. including granodiorite, slates of the Calaveras formation. altered volcanic rocks (greenstones. amphibolite schist. etc.). and serpentine. They rary much in trend and dip. are generally rather marrow, and yield ore of higher grade than the Mother Lode veins. The reins are similar in general character to those of the Mother Lode, although they show some mineralogic differences. A famous mine of the district is the North Star, the most productive gold mine in Caliornia.

From IVat to the end of 1913 this mine has yielded goll to the value of over 815.000 .000 . Its main shaft, an incline, is 5.50 feet long anl atains a rertical depth of 2.200 icet.
"The inamanita (Arctostroplylos patula) is a thrul, having a smonit lark of rich chocolate color, small pale-green roundish leaves, and berries that resemble diminutive apples. It is this resemblance that gives the shrub its common name, Spanish for little aphe. ley which it is known everwhere on the Pacific coast. Bears are very inn oi these berries. The manzanita corers many oi the hills in California with a stilf, almost impenetrable growth. Its wood is hard, and the blaze from an old gnarled root cheers many a western fireplace.
}

From several points in this vicinity a very fine view to the rear may be had across the level-topped upland surface which slopes up to the now distant summits of the main range near the south end of Lake Talnoe.

The route crosses obliquely the outcrops of Jurassic (Mariposa) slate and after ruming for a few miles near the western edge of this belt of rocks enters, near New England Mills, a belt of the Calaveras formation. This change, however, is not readily recognized from a moving train, as both formations consist largely of similar slaty and schistose rocks.

Fruit growing is obviously the principal industry of the country about Applegate, and evidences of it increase as the journey continues. The train, still following the crest of a broad ridge,

\section*{Applegate.}

Elevation 1,965 feet. Omaha 1,647 miles. passes through a country of rolling hills covered with orchards, fields of grain, and patches of timber. It is said that some of the settlements along this part of the route specialize in certain fruits. For instance, Applegate raises pears chiefly, New England Mills prunes, and so on. Snow falls oceasionally here and may lie for a few hours, and there is some frost. Conscquently this country is not suited to the growing of oranges and other semitropical fruits.

Clipper Gap, a little settlement on the narrow ridge followed by the railroad, is surounded by orchards and cultivated ground. A few miles beyond it, between mileposts 128 and 127, the

Clipper Gap.
Elevation 1,757 feet. Omaha 1,650 miles. slates of the Calaveras formation are succeeded on the west by altered greenish igneous rocks (diabase, amphibolite, and amphibolite schist), in places slaty or schistose and decomposing in general to a reddish soil. These rocks are the record of volcanic activity in Jurassic time and perhaps also in Carboniferous time.
The westhound traveler passes along the cast side of the thriving town of Auburn, the seat of Placer County, named by settlers from the city in New York. The eastbound trains go west

Auburn.
Elevation 1,360 feel. Population 2,376. Omaha 1 , 457 miles. of the town. The older part of Auburn, dating from the carly mining days, is built in the valley of the small stream called Auburn Ravine, but since those days the settlement has spread over the surrounding hills and fruit growing has largely taken the place of mining. The principal fruits raised here are peaches, plums, prunes, raisin and table grapes, and olives. Many of the ranchers have a few orange trees, but these are more numerous at Neweastle, the next station, 400 feet lower, where the soil and temperature are better adapted to citrus fruits. From the suburb of Acolia Meights, just east of the railroad, may be obtained fine views of the deep canyon of American River, similar to those seen from the train near Cape Horn (Pl. XLIX, A);
and from the hills west of Auburn may be seen on a dhar day the summit of Mount Diable, on the other side of the (ireat Valley of 'adifornia, more than 80 miles away.

About 2 miles west of Auburn, nerth of tha railmand, is the (Ophir mining district, where gold and silver veins oerme in gramite (gramodiorite) and greenstone (amphibolite) sirhist. Beyond Auhmen the route continues for about 2 miles farther arross amphibolit, sehist, which, as exposed in railroad ents, looks like dark-monerd shate and is in places rusty. The railroad winds ahong the sonth side of Dutch Ravine, keeping approximately to the greneral shone of the former plateau surface. Here again are remnants of the 'Tortiary latra coner, and at one place the railroad passes through a donp, narrow rut in the andesitic tuffs and breceias. These beds rest on gramite (gramondiorite), which is the prevalent rock from this vicinity down to Siacrat mento Valley.

Just beyond a tumel on the westhound track is the statimen of Newcastle, in the couter of an orchand combtry. Pears,

\section*{Newcastle.}

Elevation 970 feet. Population 755.* Omaha 1,662 miles. peaches, and primes are grown here, and also some oranges and lemons. Fig trees and palms may be seen near the station. Beyond Neweastle a rolling . timbered lowland comes into riew to the south. Granite is exposed in the cuts along the roal and as bowder-like outcrops in the fields.

Penryn, like all the other stations along this part of

\section*{Penryn.}

Elevation 635 feet. Population 240.* Omaha 1,666 miles. the route, ships great quantities of Pruit. Granite \({ }^{1}\) was formerly extensively quarried here for use in railroad construction and in public buildings. A small production is still maintained.
At Loomis is another large granite quarry. The stome is intermediate in color and texture betwem that quarried at Permen and at Rocklin. It is coarser and darker than the

\section*{Loomis.}

Elevation 391 feet. Omaha 1,668 miles. Rocklin granite but is fincr and camies less biotite than the Penryn stone. Loomis is, howerer, principally a fruit-shipping point, and the fruit-parking houses may be seen near the station. It is said that fruits, experiatly oranges, ripen early in this section, and that injurious frosts are unknown. The soil in this locality is decomposed granite, and beyond the station bowlder-like granite ledges erop out here and there on the soil-covered plain.

\footnotetext{
\({ }^{1}\) The Penryn stone is a dark biotite granite, rather uniform in color, but varying somewhat in texture in the different quarry openings. Dark blotches where the biotite crystals have segregated are
}
atroided as fiar as persible in the seleetion of the stone. Abont a mile exat in lennryn a galloro, on "hatak granite, " is quarriml. This stone is used dhiedy for monuments, as il takes a brilliant polish.

Rocklin, also in the fruit belt, is the principal granite-producing locality in California, whence its name. In the vicinity of the town 20 or 25 quarries are in operation, and some of them

\section*{Rocklin.}

Elevation 249 feet. Population 1,026. Omaha 1,671 miles. may be seen from the railroad. The first quarry was opened in 1863, and the stone was used in construction work on the Central Pacific Railway. The stone for the State Capitol at Sacramento (Pl.L, p. 216) and for many huildings in San Francisco came from Rocklin. \({ }^{1}\)

The traveler has now practically reached the Great Valley of California. The eountry spreads out to the north and south in low undulations and ahead are plains as far as the eye can see.

The great gold-dredging fields of California lie along the belt of country where the Sierra slope merges into the valley plain, but none of these ficlds is crossed by the Overland Route. One productive district is near Folsom, about 10 miles south of Rocklin, on American River. This district produced gold to the value of \(\$ 2,495,603\) in 1913. The Marysville dredging distriet, on Yuba River about 30 miles northwest of Rocklin, produced \(\$ 2,420,455\) in 1913, and the Oroville district, on Feather River about 25 miles north of Marysville, \(\$ 1,918,050\). The gold is obtained by powerful electrically driven dredges - - huge floating scows, some of them 150 feet long, provided with great buckets, linked together in an endless chain, for seooping up the gravel and with complete machincry for screening and washing the gravel and recovering the gold. Once floated in a pond the dredges dig their way through fieds, vineyards, and orchards, filling in behind them with washed gravel. The gold was brought down from the slopes of the Sierra and deposited in recent geolngic time by the rivers near which the dredges are working. Of late years the hard bowlders left by the dredging have been crushed and utilized as broken rock for road building. Some effort has been made also to restore the dredged ground to arable condition. Where this has been successfully accomplished in the Sacramento region vineyards and olive groves occupy areas from which gold and road metal have been mined.

At the west base of the Sierra, but not continuously exposed all along it, are beds of brown Upper Cretaceous sandstone (Chico formation) and of lighter-colored Eocene sandstone and clay, containing thin coal beds (Ione formation). \({ }^{2}\) All these beds are younger than

\footnotetext{
\({ }^{1}\) The rock is of light-graty color and of medium fine grain. Grayish quartz grains, white feldspars, black or darkbrown hiotite, and silvery muscovite in small scales may be readily distinguished with the unaided eye. In composition
the rock is a normal granite, but a short distance from Rocklin the country rock grades into a granodiorite.

2 The Ione formation has been described as Miocene, but recent investigations indicate that it is Eocene.
}

\begin{tabular}{lllllll}
10 & 5 & 10 & 15 & 20 & 25 & 3okilometers
\end{tabular}

Contour interval 200 feet
ELEVATIONS IV FEET ABOVE MEAN SEA LEVEL
The distances from Onaha Nersasta are shown aery ic mies
The crossties on the railroads are spaced ! mile apart

the rocks forming the mass of the Sierrat and have not beren spuedzed or altered. They dip gently westward and are covered by gravels, silts, and muds washed into the Cireat Valley of ('aliformia betreams. Remnants of the lavas that were poured down the Sierra slopes during Tertiary time cap some of the foothills atheng this pat of the route. West of them all is open phain.

At Roseville the main line is joined from the north be the somthern Pacific Co.'s line to Marysille, (lico, and 'Thama. At Tehama this lime joins the main shasta Ronte of the same company, which south of Trhama hies along the west side of sumamento Valley. Beyomd Roseville is a nearly fovelcometry, practioally all of which is under cultivation, chicfly in grain hat partly in

\section*{Roseville.}

Elevation 164 feet. Population 2,608. Omaha 1,675 miles. orchards. The scattered oak trees in this pratt of the vatley include two species, the live oak and the valley oak. (hore forenoteon p. 203.) Antelope (see sheet 24, p. 218) is a from miles beyond Roseville. Beyond Ben Ali, a siding about 12 miles from Romerille, there is a tile and brick yard north of the track.

As it approaches Sacramento the train runs on an (mbamkent, a part of a rather extensive system of levees which hohl the flood waters of Sacramento and Ancrican rivers in cherk. After crossing American River the train skirts the north side of the city to the station, which is close to Sacramento River.

Sacramento, the capital of Califormia, is on the cast bank of Sacramento River 61 miles above its month, just below the mouth of American River. The city is on the low flood plain of Sacramento River, about 30 feet above mean sea level. It is a distributing point and wholesale center for the vast and fertild Surrmento Valley and has numerous manufacturts, of which flour is the chicf. As boats drawing 7 feet of water can (eome up to the cily, freight can be transported by water to and from Sim Francisen Bay. Electricity for lighting, for street railways, and for power is furnished by hydroelectric plants at Folsom, on American River, 22 miles away, and at Colgate, in the Sierra, on Yuba River, 119 miles aw:ay.

The first settlement on the site of Sacramento was a fort built in 1839 by John Augustus Sutter, a Swiss military officer in the service of Mexico. In 1841 Sutter was granted 11 simure leagues of land by the Mexican Government, but the real history of the town begins with the discovery of gold in 1848. In December, 1849, the population was 4,000 , and a year later it had increased to 10,000 . The city was made the State capital in 185t. Before 1862 destructive floods were frequent, but since that date the eity has been protected by levees. The lower portions of the man streams in the Sarramento Valley, overloaded with silt and, especially sinee 1s 49 , with the debbris from the placer mines in the Sicrra, have built their chamels above
the level of the adjacent valley lands. Thus it has become of great importance to the farmers to confine the flood waters within the river channels, and to this end the banks have been raised by levees. There are many channels, usually dry, which lead out into the valley, particularly from the Coast Range. The flood waters of these channels can not reach the main river at all and therefore spread out over the lowlands on either side, to be eventually dissipated for the most part by evaporation. This accounts for the numerous areas of low marshy lands that border the river.

Leaving Sacramento the train crosses Sacramento River on a steel bridge and runs across flats which lie almost at tide level but which, being protected from inundation by levees, are cultivated as market gardens and for hay or grain. Farther west the land becomes marshy and is covered with a thick growth of tule (pronounced too'ly), a bulrush (Scirpus lacustris or californicus) which looks like a coarse, high grass. These marshes extend for miles on both sides of the track. In places the ground is slightly above the general level and its surface is covered with short grass used for the grazing of cattle and sheep. Beyond this country the train reaches slightly higher and better-drained lands, on which Swingle, a minor station, is surrounded by hay meadows and corn fields.

At Davis the Shasta and Overland routes join. The country in this vicinity is a smooth plain, near tidewater level, but nevertheless high enough to provide drainage. With its rich

\section*{Davis.}

Elevation 42 feet. Population 750.* Omaha 1,706 miles. fields of grain and orchards, it has a distinctly prosperous look. Beyond Davis the Coast Ranges \({ }^{1}\) become more prominent, especially to the right, ahead of the train, where one of them appears as a low dark ridge broken by one or more gaps. Valley and live oaks are again a common feature through the fields.

Dixon is an agricultural town in Solano County. Beyond it the Coast Range now looms larger as the traveler proceeds westward. Elmira (elevation 79 fect), a junction whence a

\section*{Dixon.}

Elevation 61 feet. Omaha 1,714 miles. branch road goes to Vacaville, Winters, and Rumsey, is next passed. Beyond Elmira the road approaches low foothills of the Coast Range-first a bare ridge with gaps through one of which the railroad passes over a slight rise.

\footnotetext{
\({ }^{1}\) Along the Pacific coast, from the vicinity of Santa Barbara on the south to Humboldt County on the north, rise the Coast Ranges, dividing the Great Valley of California from the ocean. These ranges are broken by the one great gap by which the combined Sarcramento and San Joaquin rivers find outlet into the Bay of Sau Fraucisco. The Coast Ranges are
geologically the most recent of the great structural features of the State. They are built up largely of folded and crushed Cretaceous, Jurassic, and Tertiary sedimentary rocks, which are in places broken through by andesitic and basaltic lavas and by older igneous rocks (diabase and other dark, heavy rocks, in part altered to serpentine).
}

STATE CAPITOL AT SACRAMEIIT CAL.
Photograpn furmanedt/ Suuto in Pacific Co.

The factory of the Pacific Portland Croment (ox and adjacent shate quarries can be seen to the north. The lincstone nised here to mix with the shale is brought from a point near Auburn.

The traveler coming across the Sacramento Valley in the day during midsummer is likely to find the trip warm, bat on reaching this gap in the Coast Range he almost invariahly motices a change. The cool breezes sweeping in from the west and carrying the smeth of the sath marshes become fresher as the train procecels, and it is a reasomalte precaution to have wraps handy from this point on.

Beyond the first spur of the Coast Range the valley agran hoadens. Higher mountains, more or less darkened by serubly timber on darir upper slopes, border the valley to the north and far to the sonth. If the air is moderately clear, Mount Diahon and the somthern continuation of the Coast Range may be seen. A group of low, romud, and grassy hills a few miles to the south are known as the Potreme Hills. (Potrero, pronounced po-tray'ro, is spanish for horse pasture.)

Suisun (suey-soon', locally soo-soon', the name of an Indian tribe, said to mean great expanse) and the adjoining town of Fairficld (the seat of Solano County, population S.3.1) are at the

\section*{Suisun.}

Elevation 15 feet. Population 641. Omaha 1,733 miles. edge of another swampy district green with tule. From this point the railroad is graded arross the Suisun Flats, which are so near tidewater lerel in Suisun Bay, to the south, that no eultivation is possible under present conditions, though the camps of several duck-shooting clubs are situated among the sloughs. The railroad formerly encountered much difficulty in maintaining its. grade across this soft ground. Certain spots sank continually ever since the road was first constructed, and it was seldom that in going over this part of the route the traveler did not see work
\({ }^{1}\) From a point near Benicia, if the day
is clear, an excellent view may be had of
the double summit and graceful curves
of Mount Diablo. Its general outline and
isolated position have given the impres-
sion that this mountain is an old volcano.
It represents, however, the higher por-
tions of an overturned arch or anticline of
sedimentary rocks thrust from the north-
east toward the southwest. From its
summit to the sea level at Carquinez
(car-kee'nez) Strait is displayed a re-
markably complete series of typical Coast
Range formations, including Franciscan,
Knoxville, Chico, Martinez, Tejon, Mon-
terey, San Pablo, late Tertiary fresh-
water beds, Pleistocene, and Recent.
Although Mount Diablo is of moderate
height (3,849 feet), its isolation and its sitwation on the edge of the Great Valley make it one of the tinest viewfoints in the state. From its top, on a clear morning, the summits of the Nierra Nevada can be fracel for over 20 miles. Lassen Peak is often visible and sometimes Momt shasta. The (ireat Valley appears divided into squares like a dheckerbourd by the section-line roads and fences. The Sun Frambiso bay region is sometimes hidden ly a rolling, showy sea of fog. The mountain is casily reached from san Francisco, though at present the aremal ascent must be made on foot or by driving. It is expereted that the road, which goes practically to the summit, will be fitted ion automobile travel.
trains and grading crews busily engaged in filling and raising some sunken portion of the track. Mud ridges rose along the tracks on both sides, and their broken and lumpy surfaces indicated a slow flowing mass of mud squeezed out by the weight and vibration of passing trains. It is said that as much as 30,000 carloads of coarse gravel ballast was dumped into one of these spots.

Beyond the marshes the railroad meets the rocky headlands that here close in upon Carquinez Strait. Some fine exposures of Cretaceous and Tertiary sandstones and shales may be seen in the cliffs and road cuts around Army Point. .

Near Benicia, on the left, is a United States arsenal and signal station. Benicia (named by Gen. Vallejo after his wife) is a manufacturing town with deep-water frontage. It con-

\section*{Benicia.}

Elevation 6 feet. Population 2,360. Omaha 1,749 miles. tains, besides the arsenal, tanneries and other commercial estahlishments. Southeast of Benicia, across the strait, is the town of Martinez, near which John Muir, Califomia's great naturalist, lived for many years. The tall smokestack east of the town belongs to the smelter of the Mountain Copper Co., which mines its ore near Kemett, in Shasta County. At this smelter sulphur fumes are utilized in making sulphuric acid, which in turn is used in treating rock phosphate brought from the company's mine near Montpelier, Idaho, and here turned into fertilizer. Just beyond Beniciat the train is run onto a ferryboat and is carried across Carquinez Strait to Port Costa, a distaner of a mile.

The geologic section from Benicia and Port Costa to the vicinity of Berkeley and Oakland is particularly interesting, as in it are represented many of the characteristic sedimentary formations of the Coast Range. This stratigraphic section is quite different from that of corresponding age in the Sierra foothills.

Port Costa (see sheet 25, p. 224), the westem ferry terminus, is a shipping point, particularly for grain, which comes from the extensive grain-producing district in the valley \({ }^{1}\) and is

\section*{Port Costa.}

Elevation 11 feet. Omaha 1,750 miles. here loaded into ocean-going vessels. A long line of galvanized-iron grain warehouses may be seen on the water front.
On leaving Port Costa the train skirts the south shore of Carquinez Strait, where the steep biuffs offer many good exposures of folded sedimentary rocks. The first rocks seen are Upper Cretaceous

\footnotetext{
\({ }^{1}\) Agriculture in California had its beginning in wheat raising, and wheat was long the state's greatest (rop) Its produrtion stearlily increased until about 1884, to over \(51,000,000\) hushels annually. The levelness of the great grain fields of the valley hed to the utilization of
}
combined harvesters, steam gang plows, and other farm machinery of extraordinary size and efficiency. Recently, however, fruit growing has become a more important industry than grain farming. In the value of its fruit crop California leads all the other States.

(iEOLOGIC AND TOPOGRAFHIC MAP
O) \({ }^{\prime}\) ERLAND ROUTE

From Onaha, Nebraska, to San Franejeco, Cahforma

 UNITED STATES (iEOLOGICAL SIRUFY - bersere uTle har'ra. DTPE'TOR
 \(1: 1.5\)
Esen wasaringle shawn a ine map with a name it parentitesta in ine

(Chico) sandstone and shale. The rockis hate a moderately stomp westward dip and trend almost direedy anmos the amber of the railroad, so that as the train procects sucersisively youmer formations are crossed. At Eckley, a short distance beyoud Pont Conta, brick is manufactured from the (retalecous shade. It (rocket is a large sugar refincry. Mare Island, across C'arguine\% strait, is the site of the United States nary yard, which, howerer, is not readily discerned from this point. The (retareous whates and simblstomes continue to Vallejo Junction and a littob beyond.

On the southeast side of San Pablo Bay, near the west end of Carquinez Strait, there are wave-cut terraces and devated deposits of marine shells of species that are still living. Therse terraces and deposits do not show south of Sim Pablo Bay, and therefore seem to indicate the recent elevation of a block including only a portion of the shore around the bay. This block probably includes the Bometery Hills and a considerable territory to the east, perhapse even extending to Suisun Bay.

From Vallejo Junction a ferry plies to Vallejo (val-yay'ho), which is on the mainland opposite the nary yard, and from which railroad lines extend into the rich Napa and somoma valleys. Vallejo Junction.
Elevation 12 feet. Omaha 1,754 miles. Santa Rosa, the home of the famons, Luther Burbank, is in the Sonoma Valley. Vallejo was namod from Gen. Mariano Guadalupe Vallejo, who played a prominent part in the early history of Califormia. It was the capital of the State from 1851 to 1853. Beyond Vallejo Junction Carquinez Strait begins to open out into San Pallo Bay.'
\({ }^{1}\) The section along the shore of sian Pablo Bay between Vallejo Junction and Pinole (see figs. 19 and 20 , on sheet 25 , p. 224) includessix of the most widespread divisions of the sedimentary series in the Coast Range region of California. The formations or groups represented are the Chico (Upper Cretaceous), Martinez, (Eocene), Monterey (earlier Miocenc), San Pablo (later Miocene), Pinole tufi (Pliocene), and Pleistocene. The only large divisions of the middle Coast Rango sequence not represented are the liranciscan (Jurassic?), Tejon (Eocene), and Oligocene, all of which are found within a few miles to the east and south.

In the San Pablo Bay section all the formations below the Pleistocene are included in a syncline, on the nowtheast side of which the strata are nearly vertical, but on the southeast side the dip of the beds is lower. The Pleistocene beds
rest horizontally achess the rmmeated edges of the Mixwne and liliocene. The ageregate thicknews of the sediments in the han Pable lowy eetion is not less than 8,000 Feet. With the exaption of the Pliocene and a protion of the plaistocene, all the formations are of matine origin. A pertion of the limoke tulf was certainly alepresited in irenh water. The Pleister ceme beds were depwitod under varying marine, estuarine, and fluvial conditions.
Fossil remains are fonul in all the formations of the Sall libld, baty section, and at least six disfinct fimmat are represented. Very faw specimens have been procured in the chico near the line of the railruad, Jut abundant fossils are found in the same formation a few miles to the east. The Martinez fanna is represented in the cliff opposito the selly smelter. The Monterey and the San Pablo contain aboudant remains. The fresh-water

The dark Cretaceous shales near the railroad station at Vallejo Junction are soon succeeded by brown shales and massive sandstones belonging higher in the Cretaceous system. The contact between the Chico and the Martinez (Eocene) beds is in a fault zone cut by the railroad tumel a short distance west of Vallejo Junction. Just beyond the tumel the contact between the Martinez and the Monterey (Miocene) is clearly shown in a high cliff to the left, opposite the Selby Smelting Works, where the buff-colored Monterey sandstones and shales rest with marked unconformity upon the black Eocene shales. Near the contact the Eocene shale is filled with innumerable fossil shells of boring Miocene mollusks. .The Monterey beds are extraordinarily well exposed in the cliffs to the left, and immediately beyond the contact, where they consist of fine buff shales with shaly sandstones and thin bands of yellow limestone.

After leaving these eliff exposures the train passes Tormey station, crosses a little swamp, and approaches a tunnel cut into vertical cliffs of massive gray sandstone; this is the type locality of the San Pablo formation (upper Miocene). The refining plant of the Union Oil Co., at the east end of this tumnel, is located on the upper part of the San Pablo beds. Vertical beds of massive tuff immediately west of the oil refinery represent the lower part of the Pinole tuff. Beyond these beds the train crosses another swamp and enters a cut in which white voleanic ash beds of the Pinole tuff dip at a relatively low angle to the northeast. This change in dip shows that these beds are on the southwest side of the San Pablo Bay syncline, the axis of which passes through the swamp area. Resting upon the tilted ash deposits in this part of the section are horizontal beds of Pleistocene shale.

The name Rodeo (ro-day'o), meaning "round-up," indicates that the station so called was formerly a cattle-shipping point. Beyond Rodeo the train enters a series of cuts. Near the sta-

\section*{Rodeo.}

Elevation 12 feet. Omaha 1,757 miles. tion are exposures of massive tuffs close to the base of the Pinole tuff. Beyond this point the San Pablo (Miocene) appears, with low dips to the northeast. In the sca cliffs on San Pablo Bay a few yards from the railroad are excellent exposures of the Miocene capped by Pleistocene shale. At Itereules, where there are large powder works, the railroad cut is in broken shale of the Monterey group, the same beds that were seen near the Selby smelter, on the northeast side of the syncline. Beyond Hercules the railroad passes over Monterey shale

\footnotetext{
fauna of the Pinole tuff is represented by molluscan speries. Leaves and remains of vertebrates are also present. The Pleistocene shale contains abundant
marine shells of a few species, with mammal bones representing the elephant, horse, camel, bison, ground sloth, antelope, lion, wolf, and other forms.
}
to the town of Pinole (pec-mo'lay, a Spanish temu used hy the Imdians for parched grain or seeds), where the Pinole tull is in contact, with the Monterey and is cowered ley a dhick mantle of the Pleistorene shale. In the euts sonthwest of Pinole the rocks exposed are all either steeply inclined Pliocene tuffs or horizontal Pleistorene beds.
At Krieger, where the tracks of the Santa Fe route maty be seen approaching the bay front from the south, is a so-ralled "tank farm." The oil-storage tanks, which belong to the standard Oil Co., are beyond the Santa Fe lme. Beyond Sobrante station is Giamt, another powder factory, and beyond that are pottery works which ohtain clay from Ione, in the Sierra Nevada. The bay shore near Oakland is largely given over to industrial uses, on account of its facilities for rail and water transportation.

Beyond Giant the foothills retreat from the bay shore and the railroad enters the broad lowland on which the eities of Berkeley and Oakland are built. Near San Pablo, in the viemity of San Pablo and Wildeat crecks, there is a gravelfilled basin. Many wells sunk in this gravel may be seen near the tracks, and from them a municipal

\section*{San Pablo.}

Eievation 30 feet. Omaha 1,765 miles. water company and both railroads obtain water. West and southwest of San Pablo station a line of hills shuts out a view of San Francisco Bay. These hills constitute the Potrero San Pablo, so called because, being separated from the mainland by marshes, they were a convenient place in which to pasture homes during the days of Mexican rule, when fences were practically unknown. Tho hills are made up wholly of samdstone belonging to the Frauciscan group. \({ }^{1}\) On the other side of them are wharese, warehouses, and large railway shops belonging to the Santa Fe system. From that side also the Santa Fe ferry plies to San Francisco.

\footnotetext{
\({ }^{1}\) The rocks of the Franciscan group comprise sandstone, conglomerate, shale, and local masses of varicolored thinbedded flinty rocks. The flinty rocks consist largely of the siliceous skeletons of minute marine animals, low in the scale of liie, known as Radiolaria, and on this account they are known to geologists as radiolarian cherts. All the rocks mentioned have been intruded here and there by dark igneous rocks (diabase, peridotite, etc.), which generally contain a good deal of magnesia and iron but littlesilica. The peridotites and related igneous rocks have in large part undergone a chemical and mineralogic change into the rock
}
known as serpentine. Closely assoriated with the serpentine ats a rule are masses of crystalline laminated rock that consist largely of the beantiful blue mineral giaucophane and for that reason are called glaucophane sehist. Schist of this chararter is known in comparatively few parts of the world, but is very characteristic of the Franciscan group. It has beon formed from other rocks throngh the chemical action known as contact metamorphism, set up by adjacent freshly intruded igneous rooks. The Franciscan group is one of the most widespread and interesting assemblares of rocks in the Coast Ranges.

Richmond, on both the Southern Pacific and the Santa Fe lines, is becoming a busy shipping, railroad, and manufacturing point, on account of the congestion of the water front of Oak-

\section*{Richmond.}

Population 6,802. Omaha 1,767 miles. land and San Francisco. The hills on the east side of the track, known to old Californians as the Contra Costa Hills, but now often referred to as the Berkeley Hills, rise stecply from the plain. The most conspicuous summit from the west is Grizzly Peak (1,759 feet), but Bald Peak, just east of it, is 171 feet higher. The hills are generally treeless on their exposed western slopes, although their ravines and the eastern slopes are wooded. \({ }^{1}\)

Beyond San Pablo and Richmond the rocks of the Franciscan group outerop in low hills. At Stege the railroad is still close to the shore of the bay. Between this place and the hills is one of the suburbs of Berkeley known as Thousand Oaks. The traveler can get here an unobstructed view out over the bay and through the Golden Gate. Mount Tamalpais is on the right and San Francisco on the left. Just to the left of the Golden Gate the white buildings of the Exposition grounds can readily be distinguished if the day is at all clear. At Nobel station a little wooded hill of Francisean rocks stands close to the railroad on the left. Beyond Nobel an excellent view may be had of the liilly portion of the city of Berkeley.

West Berkeley station, also known as University Avenue, is in the older part of the city of Berkeley, and the center of the city is now almost \(2 \frac{1}{2}\) miles back toward the hills. Berkeley was

Berkeley.
Elevation 8 feet. Population 40,434 . Ontaha 1,772 miles. named after Bishop Berkeley, the English prelate of the eighteenth century who wrote the stanza beginning " Westward the course of empire takes its way," hy those who chose it as a site for the University of California. One of them, looking out over the bay and the Golden Gate, quoted the familiar line, and another suggested "Why not name it Berkeley?" and Berkeley it became.

The University of California was founded in 186s. It is one of the largest State universities in America, including besides the regular collegiate and postgraduate departments at Berkeley the Lick Observatory, on Mount Hamilton; colleges of law, dentistry, pharmacy, art, etc., in San Francisco; the Scripps Institution for Biological

\footnotetext{
\({ }^{1}\) The geologie structure of these hills is rather complicated. Along their southwest base, between Berkeley and Oakland, is a belt of the samdstones, cherts, aud sthists belonging to the Franciscan (Jurassic?) group and characteristically associatod with masses of serpentine. Overlying the Franciscan rocks are sandstones, shales, and conglomerates of cre-
}

\footnotetext{
taceous, Eocene, and Miocene age. These in turn are overlain by tuffs, freshwater beds, and lavas of Pliocene and early Quaternary age. The general structure of the ridge east of Berkeley is syuclinal, the beds on both sides dipping into the hills. The upper part of Grizzly Peak is formed chiefly of lava flows of Pliocene age.
}

Research, at La Jolla, near San Diego; and other laboratorios for special studies elsewhere. It is a coeducational institution and had a total enrollment for 1914-15, not including that of the summer school, of 6,202 . The members of the faculty and other offieerss of administration and instruction number s90. The miversity buildings at Berkeley are beautifully situated and have a broad outlook over San Francisco Bay. Their position can readily be identifed from the train by the tall clock tower. Another prominent group of buildings occupying a similar site just south of the university grounds is that of the California School for the D) caf and the Btind.

Just before reaching Oakland (Sixteenth Street station) the train passes Shell Mound Park. The mound, which is about 2.50 feet long and 27 feet high, is on the shore of the hay close to the right-hand side of the track. It is composed of loose soil mixed with an immense number of shells of clams, oysters, abalones, and other shellfish gathered for food by the prehistoric inhabitants of the region and eaten on this spot. The discarded shells, gradually aceumulating, built up the mound. Such relics of a prehistoric people are numerous about the bay, for over 400 shell mounds have bern discovered within 30 miles of San Francisco. The mound just deseribed is one of the largest, and from excavations in it a great number of crude stone, shell, and bone implements and ornaments have been obtamed. The mounds evidently mark the sites of camps or villages that were inhabited during long periods, for the accumutation of such refuse could not have been very rapid. Archeologists who havestudied the mound say that it must have been the site of an Indian village over a thousand years ago, and that it was probably imhabited almost continuously to about the time when the Spamiards first entered California.

The first stop in the city of Oakland is made at the Sixteenth Street station, about \(1 \frac{1}{2}\) miles from the business center of the city. Oakland is the seat of Alameda County and lies on the castern

\section*{Oakland.}

Elevation 12 feet. Population 150,17. Omaha 1,774 miles. shore of San Francisco Bay directly opposite San Franciseo. Its name is derived from the live oaks which originally covered the site. It is in important manufacturing center and has a fine harbor with 15 miles of water front. Visitors to Oakland should if possible take the electric cars to Piedmont, from which a fine viow may be had of Sam Francisco, the bay, and the Golden Gate. This view is especially good at sunset. A walk or drive to Redwood Peak takes the visitor past the former home of Joaquin Miller, author of "Songs of the Sierras" and many other familiar poems, and affords equally tine views.

Leaving the station at Sixteenth Street, the train skirts the west side of the city and runs out on a pier or mole \(1 \frac{1}{3}\) mites long. This is the end of the "overland" part of the route, for the rest of the
journey must be made on the San Francisco ferries. The distance across the bay is 4 miles, and the trip is made in the ferryboats in about 20 minutes. In crossing the bay the traveler sees Goat (or Yerba Buena), Alcatraz, and Angel islands to the right, Marin Peninsula beyond them, and the Golden Gate opening to the west of Alcatraz.

Goat Island lies close to the ferry course across the bay. Like most of the other islands in the bay, it is owned by the Government. On the nearest point there is a lighthouse station, and below it the rocky cliff is painted white to the water's edge. Just to the right of this is the supply station for the lighthouses of the whole coast from Seattle to San Diego. Behind this station is the United States naval training station, of which the officers' quarters may be seen on the hillside and the men's quarters near the larger buildings below. At the extreme northeast point of the island is a torpedo station, where torpedoes are stored for use in the coast defense.

On Alcatraz, the small island west of Goat Island, is a United States disciplinary barracks, and on Angel Island, north of Alcatraz, are barracks and other military buildings, a quarantine station, and an immigrant station.

Few people in viewing the Bay of San Francisco think of it in any other way than as a superb harbor or as a beautiful picture. Yet it has an interesting geologic story. The great depression in which it lies was once a valley formed by the subsidence of a block of the earth's crust-in other words, the valley originated by faulting. The uplifted blocks on each side of it have been so carved and worn by erosion that their blocklike form has long been lost. Erosion also has modified the original valley by supplying the streams with gravel and sand to be carried into it and there in part deposited. The mountains have been worn down and the valley has been partly filled. Possibly the valley at one time drained out to the south. However that may be, at a later stage in its history it drained to the west through a gorge now occupied by the Golden Gate. Subsidence of this part of the coast allowed the ocean water to flow through this gorge, transforming the river chanmel into a marine strait and the valley into a great bay. Goat Island and other islands in San Francisco Bay suggest partly submerged hills, and such in fact they are.

San Francisco, the chicf seaport and the metropolis of the Pacific coast, is the tenth city in population in the United States and the

\section*{San Francisco.}

Population \(\$ 16,912\). Omaha \(1,7 \lesssim 2\) miles. largest and most important city west of Missouri River. The population in 1910 showed a gain of 20 per cent since 1900 . The city is beautifully situated at the north end of a peninsula, with the ocean on one side and the Bay of San Francisco on the other. The bay is some 50 miles in length and has an area of more than 300 square miles.

(iEULOUIIC AND TOPOGMAPHIC MAP
OVERLAND ROUTE
Fioun Omaha, Nebraska, to sitn Franrisco, ('alutimmat

(NITES \&TATEA \&EOLOGICAL - CRVEV
\[
1515
\]
\[
\begin{aligned}
& \text { Where iof chapsere } \\
& \text { thee of tat name }
\end{aligned}
\]

Houre to sectow smomina stmiture along the south shore or san prole bar

The entrance to the bay lies through the Golden Gate, an strait ahout 5 miles long and a mile wide at its narrowest point.

The site of the cit \(y\) is very hilly, and a line of high rocky cherations run like a crescent-formed background from northeast to southwest across the peninsula, culninating in the Twin Peaks, 925 feet high. Telegraph Hill, in the northeastern part of the city, is 294 feet above sea level. Here stood the semaphore which signaled the arrival of ships in the days of the gold seekers. The city has been laid out without the slightest regard to topography; consequently many of the streets are so steep as to be traversable only by cable cars and pedestrians. The waters of the bay formerly extended westward to Montgomery Street, and most of the level land in the business section of San Francisco has been made by filling.

Golden Gate Park, containing 1,014 acres, and extending westward from the city to the ocean, was a waste of barren sand tlunes in 1870 , but skillful planting and cultivation have transformed it into one of the most beautiful semitropical public parks in the country. At its west end is the famous Cliff House, overhanging the sea, and a short distance out from the shore are the Seal Rocks, where the great sea lions may often be seen. The Sutro Baths, near br, named after Adolph Sutro, constructor of the famous Sutro tumel on the Comstock lode, contain one of the largest inclosed pools in the world.

San Francisco Bay is the largest and most active harbor on the Pacific coast. Besides the coastwise routes, the port maintains steamship comections with Australia, Hawaii, Mexico, Central and South America, the Philippines, China, and Japan.

\section*{Commerce.} The direct foreign trade is chiefly with British Columbia, South America, China, and Japan. Although the export grain business has now largely shifted to the ports of Oregon and Washington, San Francisco's permanence as one of the greatest ports of the country is assured by its advantageous position, its wealth of back country, and its command of trans-Pacific and transcontinental trade routes. Three large railroad srstems-the Southern Pacific (with two transcontinental lines), the Atchison, Topeka \& Santa Fe , and the Western Pacific-comect it with the East. Lines of the Southern Pacific Co. comnect the city with different parts of the State and with the northern transcontinental lines. The Northwestern Pacific serves Mendocino, Sonoma, and Marin counties, on the north, and several smaller lines radiate from different ports on the bay. Only one of the lines mentioned, the Coast Line of the Southern Pacifie, actually enters the city. The other roads have their terminals in Oakland and other cities around the bay.
\(38088^{\circ}\)-Bull. 612-16-15

The first settlement on the present site of San Francisco dates from 1776. It consisted of a Spanish military post (presidio) and the Franciscan mission of San Francisco de Asís. In History. 1836 the settlement of Yerba Buena (yair'ba bway'na) was established in a little cove southeast of Telegraph Hill. The name San Francisco was, however, applied to all three settlements. The United States flag was raised over the town in 1846 , and the population rapidly increased, reaching perhaps 900 in May, 1845. The news of the gold discoveries was followed by crowds of fortune seekers, so that by the end of 1848 the city had an estimated population of 20,000 . From that time on San Francisco has grown rapidly. The first regular overland mail communication with the East was established by pony express in 1860 , the charge for postage being \(\$ 5\) for half an ounce. In 1869 the completion of the Central Pacific Railway to Oakland marked the beginning of transcontinental railway commmication.

The city suffered from severe earthquakes in 1839, 1865, 1868, and 1906. In respect to property loss the disaster of April 18, 1906, was one of the great catastrophes of history. The actual damage to the city by the earthquake was comparatively slight, but the water mains were broken and it was consequently impossible to check the fires which immediately broke out and which soon destroyed a large part of the city, including most of the business section. Some 500 persons lost their lives, and the estimated damage to property was between \(\$ 350,000,000\) and \(\$ 500,000,000\). Reconstruction began at once, and the city was practically rebuilt in the three years following the earthquake.

The Ocean Shore Railroad (station at Twelfth and Mission streets) and comecting automobile line afford a good opportunity to see

Excursions from San Francisco. the geology along the shore from San Francisco to Santa Cruz. The return trip may be made by rail or stage across the Santa Cruz Mountains. For \(4 \frac{1}{2}\) miles north of Mussel Rock (11.9 miles from San Francisco) there is exposed in the bluffs along the coast a remarkable section of the Merced (Pliocene) formation, consisting of about 5,800 feet of highly inclined marine clays, shales, sandstones, conglomerates, and shell beds. In these beds have been found fossil remains of 53 species of marine animals, mostly mollusks, of which three-fourths are still represented by forms living in the ocean to-day. The San Andreas rift (the fracture along which displacement occurred in the San Francisco earthquake of 1906) passes out to sea at the mouth of a little ravine half a mile north of Mussel Rock and is crossed by the railroad. The exposures of the Merced formation along the sea cliffs were much finer before the San Francisco earthquake, which shook down some of the eliffs. From Tobin (18.1 miles) to Green Canvon
(21.1 miles) the bed of the Ocean Shore Railroad is cut in bold sea cliffs high above the water and afforls not only fine shore scenery but also an excellent section of rocks that probably belong to the Martinez (Eocene) formation. The contact of these rocks with a large mass of pre-Francisean granite (quartz diorite), which forms Montara Mountain, a bold ridge that extends southeastward from this part of the coast, is crossed by the railroad between Tobin and Green Canyon. At the north end of Seal Cove, opposite Moss Beach station (24.1 miles), the bowhery and fossiliferous sea-beach berls here forming the base of the Merced (Pliocene) and resting on the granite of Montara Mountain are well exposed.

This delightful excursion may be extended down the coast to Pescadero, and the return made by stage across the range and rift zone to San Mateo; or the traveler may continue down the coast to Santa Cruz and return across the range on the Southern Pacific line either by way of the Big Trees and Los Gatos or by Pajaro and Gilroy.

The characteristic thin-bedded radiolarian chert of the Franciscan group is well exposed about Strawberry Hill, in Golden Gate Park. There are good exposures of the chert also on Hunter Point, reached most readily by the Kentucky Street cars from Third and Market streets. The principal rock of the point is serpentine. A mass of basalt in the sea cliffs on the south side presents a remarkable spheroidal and rariolitic structure.

The summit of Mount Tamalpais is rery easily and comfortably reached by ferry to Sausalito, electric train to Mill Valley, and a mountain railway to the hotel on the top. The ferry trip is one of the best to be had on the bay. The steamer passes close to the island of Alcatraz, on which is a disciplinary barracks. To the west may be scen the ocean through the Golden Gate. Angel Island, with its interesting glaucophane schists, serpentine, and other rocks, lies to the right as the boat approaches Sausalito. The sedimentary rocks of both islands belong to the Franciscan group and are chiefly sandstone. The trip from Sausalito to Mill Valley by the Northwestern Pacific Railroad gives the traveler opportunity to see some characteristic bay-shore scenery and particularly to note how the waters of the bay appear to have flooded what was once a land valley. Mill Valley is named from an old Spanish sawmill, the frame of which is still standing. The views obtainable from the scenic railway and from the summit of Mount Tamalpais are extensive and varied. To the south may be seen San Francisco and Mount Hamilton (4,444 feet). To the southeast is Mount Diablo (3,S49 feet), through which runs the meridian and base line from which the public-land survers of a large part of California are reckoned. Nearer at hand is the bay, with its dark-green bordering marshes through which wind serpentine tidal creeks. Close under the mountain to the north is Lake

Lagunitas (an artificial reservoir), and beyond it ridge after ridge of the Coast Range. To the west is the rast Pacific.

From the summit of Tamalpais one sees clearly that San Francisco Bay is a sunken area in which hilltops hare become islands and peninsulas. This area is the northern extension of the crustal block whose sinking formed Santa Clara Valley. A later sag admitted the ocean into the valley, and the Golden Gate, formerly a river gorge, became a strait.

Mount Tamalpais has really three peaks: East Peak (2,586 feet), near which the Tarern of Tamalpais is situated; Middle Peak (about 2,575 feet); and West Peak (2,604 feet). From the grassy hills \(1 \frac{1}{2}\) miles west of West Peak there is a good riew of Bolinas Lagoon, though which passes the San Andreas rift, but for close views of the rift topography the visitor should walk or drive through the valley between Bolinas Lagoon and Tomales Bay, where the effects of the movement of 1906 are still in many places clearly erident.

Mount Tamalpais is composed wholly of the sediments of the Franciscan group and the igneous rocks usually associated with them, though it is chiefly sandstone. A mass of radiolarian chert occurs near the tavern, and serpentine may be seen at several places beyond West Peak. To one fond of walking and of marine riews, a trip on foot to West Peak, thence down the main ridge to Muir Woods (redwoods), and back across the hills to Mill Valley may be heartily recommended. The distance is probably \(S\) or 9 miles. The Muir Woods, which bear the name of California's greatest nature lover, form a national monument, presented to the nation by William Kent, now a Member of Congress from the first California district, for the purpose of preserving untouched by the lumberman one area of redwoods. No fitter memorial could be dedicated to the memory of John Muir, whose writings have contributed so much to the movement for preserving in national ownership, for public enjoyment, some of our finest scenic resources.

The geologic event of greatest human interest on the Pacific coast in modern times was the San Francisco earthquake of 1906. It was produced by a sudden movement of the rocks

> The earthquake rift. (faulting) along opposite sides of a fracture which may be traced for many miles in the Coast Range. The fissure existed before the earthquake of 1906, and it is erident from the relations of hills and valleys along its course that it has been the scene of earlier and, for the most part, prehistoric movements. The last movement was mainly horizontal and in places amounted to about 20 feet. The San Andreas rift, as this fissure has been called, lies just west of San Francisco, and its course is marked on sheet 25 (p. 224).

The cracks in the soil that mark the line of the last displacement and the parallel ridges and ralleys that show older displacements along the fault zone are well displayed in Spring Valley, 1:3 mikes south of San Francisco, and expecially near skimer's ranch, 40 miles northwest of San Francisen.

To reach Spring Valley the visitor should take the Southern Pacific train to San Mateo (18 miles), where a converance may be ohained for a trip through Spring Valley along (rystal Spring and San Andreas lakes.

Skinner's ranch can be reached by the ferry to Sausalito and the Northwestern Pacifie Railroad to Point Reyes station, from which the ranch is only 2 miles distant, near Olema. In this region may be seen best the earth cracks along the fault line. Near the ranch house there is striking evidence of the horizontal character of the movement that produced the earthquake. The house formerly had two trees in front of it. The fault line, which trends northwest, passes between the trees and the house, and the trees were mored 1.5 feet to the southeast with reference to the house. There was no perceptille vertical movement nor any change in the water line along Tomales Bay.

\section*{some publications on the geology of the region TRAVERSED BY THE OVERLAND ROUTE.}

Ball, M. W., The western part of the Little Snake River coal field, Wyo.: U. S. Geol. Survey Bull. 341, pp. 243-255, 1909.
Becker, G. F., Geology of the Comstock lode and the Washoe district: U. S. Geol. Survey Mon. 3, 1882.
Blackwelder, Eliot, Cenozoic history of the Laramie region, Wyo.: Jour. Geology, vol. 17, pp. 429-444, 1909.
- See also Darton, Blackwelder, and Siebenthal.

Boutwell, J. M., Economic geology of the Bingham mining district, Utah: U. S. Geol. Survey Prof. Paper 38, 1905.
-_Geology and ore deposits of the Park City district, Utah: U. S. Geol. Survey Prof. Paper 77, 1912.
Calvin, Samuel, Aftonian mammalian fauna: Geol. Soc. America Bull., vol. 20, pp. 341-356, 1909.
Cross, Whitman. See Schultz and Cross.
Darton, N. H., Preliminary report on the geology and underground-water resources of the central Great Plains: U. S. Geol. Survey Prof. Paper 32, 1905.
Darton, N. H., and Siebenthal, C. E., Geology and mineral resources of the Laramie Basin, Wyo.: U. S. Geol. Survey Bull. 364, 1909.
Darton, N. H., Blackwelder, Eliot, and Siebenthal, C. E., U. S. Geol. Survey Geol. Atlas, Laramie-Sherman folio (No. 173), 1910.
Dodge, G. M., How we built the Union Pacific Railway: Senate Doc. 447, 61st Cong., 2d sess., 1910.
Emmons, W. H., A reconnaissance of some mining camps in Elko, Lander, and Eureka counties, Nev.: U. S. Geol. Survey Bull. 408, 1910.
Gilbert, G. K., Lake Bonneville: U. S. Geol. Survey Mon. 1, 1890.
Hayden, F. V., U. S. Geol. and Geog. Survey Terr. (many reports), 1868-1888.
King, Clarence, U. S. Geol. Expl. 40th Par., Final Repts., 1871 to 1878.
Lawson, A. C., U. S. Geol. Survey Geol. Atlas, San Francisco folio, including Tamalpais, San Francisco, Concord, San Mateo, and Haywards quadrangles (No. 193), 1913.

Lindgren, Waldemar, U. S. Geol. Survey Geol. Atlas, Colfax folio (No. 66), 1900.
—— U. S. Geol. Survey Geol. Atlas, Sacramento folio (No. 5), 1894, reprinted in Folio Reprint 3, 5, and 11, 1914.
——U. S. Geol. Survey Geol. Atlas, Truckee folio (No. 39), 1897.
Lindgren, Waldemar, and Turner, H. W., U. S. Geol. Survey Geol. Atlas, Placerville folio (No.3), 1894, reprinted in Folio Reprint 3, 5, and 11, 1914.
Louderback, G. D., Basin Range structure of the Humboldt region, Nev.: Geol. Soc. America Bull., vol. 15, pp. 289-346, 1904.
Lucas, F. A., Animals of the past, New York, McClure, Phillips \& Co., 1901.
Osborn, H. F., The age of mammals, New York, 1910.
Powell, J. W., Canyons of the Colorado, Meadville, Pa., Flood \& Vincent, 1895.

Ransome, F. L., The geology and ore deposits oi Goldfipld, Nev.: U. S. Geol. Survey Prof. Paper 66, 1909.
—— Notes on some mining districts in Iumboldt County. Nev.: C. S. Geol. Survey Bull. 414, 1909.
—— U. S. Geol. Survey Geol. Atlas, Mother Lode district folio (No. 63), 1900.
Russell, I. C., Geological history of Lake Lahontan, a Quaternary lake of northwestern Nevada: L. S. Geol. Survey Mon. 11, 1885.
Schrader, F. C., The Rochester mining district, Nev.: L'. S. Geol. Survey Bull. 5s0, pp. 325-372, 1915.
Schultz, A. R., Deposits of sodium salts in Wyoming: ['. S. Geol. Survey Bull. 430, pp. 570-589, 1910.
——The northern part oi the Rock Springs coal field. Sweetwater County, Wyo.: U. S. Geol. Survey Bull. 341. pp. 256-282, 1909.

The southern part of the Rock Springs coal field, Sweetwater County, Wyo.: U. S. Geol. Survey Bull. 381, pp. 214-281, 1910.

Schultz, A. R., and Cross, Whitman, Potash-learing rocks of the Leucite Hills, Sweetwater County, Wyo.: U. S. Geol. Survey Bull. 512, 1912.
Scott, W. B., A history of land mammals in the Western Hemisphere, New York, 1913.

Shmef, B., Aftonian sands and gravels in western Iowa: Geol. Soc. America Bull., vol. 20, pp. 339-408, 1909.
Siebenthal, C. E. See Darton and Siebenthal; Darton, Blackwelder, and Siebenthal.
Smith, E. E., The eastern part of the Great Divide Basin coal field, Wyo.: U. S. Geol. Survey Bull. 341, pp. 220-242, 1909.
Spencer, A. C., The copper deposits of the Encampment district, Wyo.: U. S. Geol. Survey Prof. Paper 25, 1904.
Spurr, J. E., Geology of the Tonopah mining district, Nev.: U. S. Geol. Survey Prof. Paper 42, 1905.
Todd, J. E., Pleistocene history of the Missouri River: Science, new ser., vol. 39, pp. 263-274, 1914.
Turner, H. W. See Lindgren and Turner.
Veatch, A. C., Coal fields of east-central Carbon County, Wyo.: U. S. Geol. Survey Bull. 316, pp. 244-260, 1907.
——Geography and geology of a portion oi southwestern Wyoming, with special reference to coal and oil: U. S. Geol. Survey Proi. Paper 56, 1907.
Wegemann, C. H., The Coalville coal field, Utah: U. S. Geol. Survey Bull. 581, pp. 161-184, 1915.

\section*{GLOSSARY OF GEOLOGIC TERMS.}

Alluvial fan. The outspread sloping deposit of bowlders, gravel, and eand left by a stream where it passes from a gorge out upon a plain. (See Pl. XLII, p. 188.)
Andesite. A lava of widespread occurrence, usually of dark-gray color and intermediate in chemical composition between rhyolite and basalt.
Anticline. An arch of bedded or layered rock suggestive in form of an overturned canoe. (See also Dome and Syncline.)
Badlands. A region nearly devoid of vegetation where erosion, instead of carving hills and valleys of the familiar type, has cut the land into an intricate maze of narrow ravines and sharp crests and pimacles. Travel across such a region is almost impossible, hence the name.
Basalt. A common lava of dark color and of great fluidity when molten. Basalt is less siliceous than granite and rhyolite, and contains much more iron, calcium, and magnesium.
Bolson (pronounced bowl-sown'). A flat-floored desert valley that drains to a central evaporation pan or playa.
Bomb. See Volcanic bomb.
Breccia (pronounced bretch'a). A mass of naturally cemented angular rock fragments.
Crystalline rock. A rock composed of closely fitting mineral crystals that have formed in the rock substance as contrasted with one made up of cemented grains of sand or other material or with a volcanic glass.
Diabase. A heavy, dark, intrusive rock having the same composition as basalt, but, on account of its slower cooling, a more crystalline texture. Its principal constituent minerals are feldspar, angite, and usually olivine. Olivine is easily changed by weathering, and in many diabases is no longer recognizable. Augite is a mineral containing iron and magnesium and is similar to hornblende.
Dike. A mass of igneous rock that has solidified in a wide fissure or crack in the earth's crust.
Diorite. An even-grained intrusive igneous rock consisting chiefly of the minerals feldspar, hornblende, and very commonly black mica. If the rock contains much quartz, it is called quartz diorite. Quartz diorite resembles granite and is connected with that rock by many intermediate varicties, including monzonite. The feldspar in diorite differs from that in granite in containing calcium and sodium instead of potassium. Hornblende is a green or black mineral containing iron, magnesium, calcium, and other constituents.
Dip. The slope of a rock layer expressed by the angle which the top or bottom of the layer makes with a horizontal plane. (See also Strike.)
Dissected. Cut by crosion into hills and valleys. Applicable especially to plains or peneplains in process of erosion after an uplift.
Dome. As applied to rock layers or beds, a short anticline, suggestive of an inverted bawin.
Drift. The rock fragments-soil, gravel, and silt-carried by a glacier. Drift inrludes the unassorted material known as till and deposits made by streams flowing from the glarier.
Erosion. The wearing away of materials at the carth's surface by the mechanical action of running water, waves, moving ice, or winds, which use rock fragments and grains as tools or abrasives. Erosion is aided by weathering. See Weathering.

Fault. A fracture in the earth's crust accompanied by movement of the rock on one side of the break past that on the other. If the iracture is inclined and the rock on one side appears to have slid down the shepe of the fracture the fault is termed a normal fault. lif, wh the other hand, the rock on one side appears to have been shoved up the inclined plane of the break the fault is termed a reverse fault. (See fig. 12, p. 100, and fig. 16, p. 158.)
Fault block. A part of the earth's crust bounded wholly or in part by faults.
Fault scarp. The cliff formed by a fault. Most iault scarps have been modified by erosion since the faulting.
Fauna. The animals that inhabited the world or a certain region at a certain time.
Fissure. A crack, break, or fracture in the earth's ernst or in a mass of rock.
Flood plain. The nearly level land that borders a stream and is subject to orrasional overflow. Flood plains are built up by sediment leit by such orerflows.
Flora. The assemblage of plants growing at a given time or in a given place.
Fold. A bend in rock layers or beds. Anticlines and symelines are the common types of folds.
Formation. A rock layer, or a series of continunnsly deposited layers grouped together, regarded by the geologist as a unit for purposes of description and mapping. A formation is usually named from some plare where it is exposed in its typical character. For example, Denver formation, Niobrara limestone.
Fossil. The whole or any part of an animal or plant that has been preserved in the rocks or the impression left by a plant or animal. This preservation is invariably accompanied by some change in substance, and in impressions the original substance has all been removed. (Sce Pl. IV, p. 20, and Pl. ALX, p. i5.)
Gneiss (pronounced nice). A rock resembling granite, but with its mineral constituents so arranged as to give it a banded appearance. Host gneisses are metamorphic rocks derived from granite or other igneous rocks.
Granite. A crystalline igneous rock that has solidified slowly deep within the earth. It consists chiefly of the minerals quartz, feldspar, and one or both of the common kinds of mica, namely, black mica, or biotite, and white mica, or muscovite. The feldspar is the kind known as orthoclase, and may be distinguished from quartz by its pale-reddish tint and its property of breaking with flat shining surfaces (clearage), for quartz breaks irregularly. The micas are easily recognized by their cleavage into thin, flexible flakes and their brilliant luster.
Horizon. In geology any distinctive plane traceable from place to place in different exposures of strata and marking the same period of geologic time. A particular horizon may be characterized by distinctive fossils.
Igneous rocks. Rocks formed by the cooling and solidification of a hot liquid material, known as magma, that has originated at unknown depths within the earth. Those that have solidified beneath the surface are intrusive rocks, or, if the cooling has taken place slowly at great depth, as plutonic intrusive or plutonic rocks. Those that have flowed out over the surface are known as effusive rocks, extrusive rocks, or lavas. The term volcanic rocks includes not only lavas but bombs, pumice, tufi, volcanic ash, and other fragmental materials or ejecta thrown out from volcanoes.
Lithologic. Pertaining to lithology, or the study of rocks. (See also Petrology.) Pertaining to rock character.
Lode. An ore-bearing vein (sce Vein); especially a broad or complex vein.
Loess (pronounced lurse with the r obscure), A fine homogeneous silt or loam showing usually no division into layers and forming thick and extensive deposits in the Mississippi Talley and in China. It is generally regarded as in part at least a deposit of wind-blown dust.

Meander. To flow in serpentine curves. A loop in a stream. The term comes from the Greek name of a river in Asia Minor, which has a sinuous course. Most streams in flowing across plains develop meanders. (See Pl. XXXVII, p. 177.)
Metamorphism. Any change in rocks effected in the earth by heat, pressure, solutions, or gases. A common cause of the metamorphism of rocks is the intrusion into them of igneous rocks. Rocks that have been so changed are termed metamorphic. Marble, for example, is metamorphosed limestone.
Monzonite. An even-grained intrusive igneous rock intermediate in character between diorite and granite. It resembles grauite.
Moraine. A mass of drift deposited by a glacier at its end or along its sides.
Oil pool. An accumulation or body of oil in sedimentary rock that yields petroleum on drilling. The oil occurs in the pores of the rock and is not a pool or pond in the ordinary sense of these words.
Outcrop. That part of a rock that appears at the surface. The appearance of a rock at the surface or its projection above the soil.
Paleontology. The study of the world's ancient life, either plant or animal, by means of fossils.
Peneplain. A region reduced almost to a plain by the long-continued normal erosion of a land surface. It should be distinguished from a plain produced by the attack of waves along a coast or the built-up flood plain of a river.
Petrography. The description of rocks, especially of igneous and metamorphic rocks with the aid of the microscope.
Petrology. The study of rocks, especially of igneous and metamorphic rocks.
Placer deposit. A mass of gravel, sand, or similar material resulting from the crumbling and erosion of solid rocks and containing particles or nuggets of gold, platinum, tin, or other valuable minerals. The valuable materials in placers have been derived from rocks or veins by erosion.
Playa (pronounced plah'ya). The shallow central basin of a desert plain, in which water gathers after a rain and is evaporated.
Porphyry. Any igneous rock in which certain crystal constituents are distinctly visible in contrast with the finer-grained substance of the rock.
Quartzite. A rock composed of sand grains cemented by silica into an extremely hard mass.
Rhyolite. A lava, usually of light color, corresponding in chemical composition to granite. The same molten liquid that at great depth within the earth solidifies as granite would, if it flowed out on the surface, cool more quickly and crystallize less completely as rhyolite.
Schist. A rock that by subjection to heat and pressure within the earth has undergone a change in the character of the particles or minerals that compose it and has these minerals arranged in such a way that the rock splits more easily in certain directions than in others. A schist has a crystalline grain roughly illustrated by the grain of a piece of wood.
Sedimentary rocks. Rocks formed by the accumulation of sediment in water (aqueous deposits) or from air (eolian deposits). The sediment may consist of rock fragments or particles of various sizes (conglomerate, sandstone, shale); of the remains or products of animals or plants (certain limestones and coal); of the product of chemical action or of evaporation (salt, gypsum, etc.); or of mixtures of these materials. Some sedimentary deposits (tuffs) are composed of fragments blown from volcanoes and depcsited on land or in water. A characteristic feature of sedimentary deposits is a layered structure known as bedding or stratification. Each layer is a bed or stratum. Sedimentary beds as deposited lie flat or nearly flat.
Shale. A rock consisting of thin hardened layers of fine mud.

Slate. A rock that by subjection to pressure within the earth has aequired the property of splitting smoothly into thin plates. The cleavage is smonther and more regular than the splitting of schist along its grain.
Stratigraphy. The branch of geologic science that deals with the order and relations of the strata of the earth's crust.
Strike. The direction along which an inclined romk layer would meet the earth's surface if that surface were level. The outcrop (which see) of a bed on a plain is coincident with its strike.
Structure. In geology, the forms assumed by sedimentary beds and igneous rorks that have been moved from theiroriginal position by forces within the earth, or the forms taken by intrusive masses of ignerus rock in comnection with effects produced mochanically on neighboring rocks ly the intrusion. Folds (anticlines and synclines) and faults are the principal mechanical effects considered under structure. (See figs. 12 and 13, p. 100.) Sehistosity and cleavage are also structural features.
Syncline. An inverted arch of bedded or layered rock suggestive in form of a canoe.
Talus (pronounced tay'lus). The mass of loose rock fragments that accumulates at the base of a cliff or steep slope.
Terrace. A steplike bench on a hillside. Most terraces along rivers are remnants of valley bottoms formed when the land was lower or when the stream flowed at higher levels. Other terraces have been formed by waves. Some terraces have been cut in solid rock, others have been built up of sand and gravel, and still others have been partly cut and partly built up.
Till. The deposit of mingled bowlders, rock fragments, and soil left behind by a melting glacier or deposited about its margin.
Tuff. A rock consisting of a layer or layers of lava particles blown from a volcano. A fine tuff is often called volcanic ash and a coarse tuff is called breccia.
Type locality. The place at which a formation is typically displayed and from which it is named; also the place at which a fossil or other geologic feature is displayed in typical form.
Unconformity. A break in the regular succession of sedimentary rocks, indicated by the fact that one bed rests on the eroded surface of one or more beds which may have a distinctly different dip from the bed above. An unconiormity may indicate that the beds below it have at some time been raised above the sea and have been eroded. In some places beds thousands of feet thick have been washed away before the land again became sulmerged and the first bed above the surface of unconformity was deposited. If beds of rock may be regarded as leaves in the volume of geologic history, an unconformity marks a gap in the record. (See p. 42.)
Vein. A mass of mineral material that has been deposited in or along a fissure in the rocks. A vein differs from a dike in that the vein material was introduced gradually by deposition from solution whereas a dike was intruded in a molten condition.
Volcanic bomb. A rounded mass of lava thrown out while in a hot and pasty condition from a volcano. A bomb, like a raindrop, is rounded in its passage through the air and may be covered with a cracked crust due to quick cooling.
Volcanic cone. A mountain or hill, usually of characteristic conical form, built up around a volcanic vent. The more nearly perfect cones are composed principally of lava fragments and volcanic ashes.
Volcanic glass. Lava that has cooled and solidified before it has had time to crystallize.

Volcanic neck. A plug of lava that formerly congealed in the pipe of a volcano. When.the tuifs and lava flows that make up most of a volcano have been washed away by erosion the neck may remain as an isolated hill.
Volcanic rocks. Igneous rocks erupted at or near the earth's surface, including lavas, tulis, volcanic ashes, and like material.
Weathering. The group of processes, such as the chemical action of air and rain water and of plants and bacteria and the merhanical action of changes of temperature, whereby rocks on exposure to the weather change in character, decay, and finally crumble into soil.

\section*{ILLUSTRATIONS.}

\section*{ROUTE MAP.}

For the convenience of the traveler the sheets of the route map, are so folded and placed that he can unfold them one by one and keep each one in riew while he is reading the text relating to it. A reference in parentheses is given in the text at each point where a new sheet should be unfolded
Sheet 1. Council Bluffs, Iowa, to Ames, Nehr..................................... Page. is

3. Thummel to Buda, Nebr. 26

5. Vroman to Dexter, Nebr.................. 30
6. Paxton to Ralton, Nebr 34

8. Kimball, Nebr., to Archer. Wyo. 38
9. Cheyenne to Harper. Wyo. 50
10. Harper to Fort Steele. Wyo... 62
11. Lahkota to Red Desert. Wyo... . . . 68
12. Hillside to Rock Springs. Wyo... 70
13. Kanda to Carter, Wyo... 76
14. Antelope, Wyo., to Devils Slide, Utah....................................... . . . 8
15. Morgan to Midlake, Utah. 102

15в. Dayton to Pocatello, Idaho... 124
15c. Tyhee to Winder, Idaho. 138
15D. Rexburg, Idaho, to Yellowstone, Mont....................................... 148
16. Rambo to Umbria Junction, Utah....... 156
17. Umbria Junction, Utah, to Alazon, Ner...................................... . . . 162
18. Tulasco to Palisade, Nev.... 168

20. Preble to Zola, Nev.. .
21. Nenzel to Lava, Nev. 184
22. Fernley, Nev., to Summit, Cal. 202
23. Soda Springs to Roseville, Cal... 214
24. Antelope to Port Costa, Cal.. 218
25. Port Costa to San Francisco, Cal... 224

PLATES.

III. The plains of Nebraska: A, Fifty years ago; \(B\), Now covered with corn; \(C\), When buffalo roamed over them; \(D\), Supporting lierds of domestic cattle
Page.
Plate IV. A, \(B\), Marine fossils of Cretaceous age; \(C\), Carboniferous forest 20
V. Animals that lived in central North America in Cretaceous time: \(A\), Skeleton of the head of IIesperornis; \(B\), Restoration of a mosasaur; C, Restoration of a pterodactyl. 21
VI. Rucks of Miocene age and restorations of animals that lived in North America during the Miocene epoch: A, Short-limbed rhinoceros, known as Teleoceras; \(B\), Miocene mastodon and Pleistocene elephant; C, Moropus elastus; D, A four-horned deer; \(E\), Gigantic giralfe-camel; \(F\), Miocene beds (Arikaree formation) resting unconformably on Oligocene beds (Brule clay) in Pawnee Buttes, Colo. 40
VII. Rocks of Oligocene age and restorations of animals that lived in central North America during the Oligocene epoch: A, Jail rock, north of Sidney, in western Nehraska; \(B\), An American rhinoceros; C, "Giant pigs"; D, Titanotheres; E, Protoceras celer 41
VIII. A, View near Dale (reek station, Wyo., showing characteristic weathering of the Sherman granite; \(B\), Small "soda lake" on the plain near Laramie, Wyo 44
IX. Natural monuments on the plain near Red Buttes, Wyo., eroded from red sandstone of the Casper formation 45
X. A, An armored dinosaur (Stegosaurus); \(B\), A carnivorous dinosaur (Allosaurus) preying on one of the herbivorous dinosaurs 52
XI. A, A hornel toad, a macdern lizard that is armed like some of the ancient dinesaurs; \(B\), The last of the dinosaurs (Triceratops).. 53
XII. A, Platte River at Fort Steele, Wyo.; B, Elk Mountain, the north end of the Medicine Bow range 60
XIII. A, Gap in the Cambrian quartzite through which the westbound tourist passes after leaving Rawlins, Wyo.; \(B\), Characteristic view of the Red Desert 61
XIV. A, Table Rock, near Bitter (reek, Wyo.; B, Characteristic view of the north wall of the canyon through which the tourist passes near Point of Rocks, Wyo 66
XV. A, Coal-bearing sandstone of the Mesaverde formation; \(B\), Trans- portation, old and new; C, Near view of White Mountain 67
XVI. Major J. W. Powell 72
XVII. A, Green River City, Wyo., as seen from Castle Rock; B, Natural monuments west of Castle Rock 73
XVIII. A, "Fish Cut," west of Green River City, Wyo.; B, Bluffs of the Green River formation near Green River City, Wyo 74
XIX. Fossils from the Green River formation: \(A\), Fossil fish; \(B\), Fos- sil plant 75
XX. A, A creodont, an ancient doglike animal, one of the ancestors of the carnivorons mammals of to-day; \(B\), Eobasileus, one of the types of animals that became extinct ages ago 80
XXI. A, Geologic features seen from point south of Evanston, Wyo.; B, Details of prominent hill at left of view shown in \(A\) 81
XXII. A, "Steamboat Rock," in Echo Canyon, Utah; B, "The Nar- rows," in Echo Canyon, Utah 84
XXIII. A, North wall of Echo Canyon, Utah, at its junction with Weber (anyon; \(B\), Pulpit Rock at Echo, Utah 85
l'age.
Plate XXIV. A, The Witches, near Echo, Utah, as seen from the train; B, Side view showing, on the butte to the right, the "Witch's ('ap''. 86
XXV. A, View of the valley of Weber River from Witches Rocks; \(B\), The Devil's Slide 87
XXVI. A, Z-shaped folds near east end of Ogden ('anyon; \(B\), Recent fault scarp at the mouth of Ogden Canyon 100
XXVII. View in Ogden Canyon below The Narrows. 191
XXVIII. A, West iront of Wasatch Range at Ogden, Utah; \(B\), Diagram showing geology of mountain masses in A 104
XXIX. A, Lake Bonneville shore line at Brigham, Utah; \(B\), ('ambrian quartzite resting on Archean gneiss near Willard, Utah 105
XXX. A, "The Gates" of Bear River; B, East Butte, Idaho 112
XXXI. Red Rock Pass and the outlet channel oi Lake Bonneville. 113
XXXII. Upper ialls, Henrys Fork of Snake River 14
XXXIII. Lower falls, Henrys Fork of Snake River. 145
XXXIV. View eastward along the Lucin cut-off across the west arm of Great Salt Lake 152
NKXV. Palisade Canyon, Nev 153
XXXVI. A, Snow on the north end of the Humboldt Mountains; \(B\), Hot spring near Elko, Nev 176
XXXVII. Channel of Humboldt River near Rye Patch, Nev 177
XXXVIII. Carson Desert at Parran, Nev. 182
XXXIX. Piute Indians at home 183
XL. Tonopah, Nev., a typical mining community 184
XLI. Consolidated mill, Goldfield, Nev 185
NLII. United States Reclamation Service dam on Truckee River. 188
XLIII. Virginia City, Nev., on the famous C'omstock Lode. 189
XLIV. A, Truckee River canyon near Floriston, Cal.; \(B\), Truckee, Cal. 196
XLV. Lake Tahoe, Cal. 197
XLVI. Cave Rock, Lake Tahoe, Nev. 200
XLVII. \(A\), Donner Lake; \(B\), Desolation Valley, near Lake Tahoe 201
XLVIII. A, View of Tertiary gold-gravel deposits between Gold Rum and Dutch Flat; B, Yiew in a railroad cut between Forebay and Midas. 206
XLIX. A, View down canyon of North Fork of American River from Cape Horn, Cal.; B, Blue Canyon, Cal 207
L. State capitol at Sacramento, Cal 216
FIGURES.Figure 1. Sketch profile of river bluifis near Omaha, Nebr., showing Aftoniangravelss
2. Sketch profile showing relation of loess to underlying beds of clay and glacial till in railroad cuts west oi Omaha, Nebr 14
3. Cross section of the rock formations from the Rocky Mountains to Omaha, Nehr. 16
4. Map of North America showing area covered by the Pleistocene ice sheet at its maximum extension 22
5. Sketch profile of the bluffs near Brule, Nebr 31
6. Typical sand dune with blow-out in its top 33
7. Tertiary sand and gravel overlying truncated edges of older rocks 42
8. Unconformity in a railroad cut 4 miles west of Lookout, Wyo 50
Page.
Figure 9. Leg bones of a dinosaur, showing size in comparison with that of a man 53
10. Map showing outline of the Great Basin 82
11. Diagram showing fluctuations of water surface of Great Salt Lake, Utah, 1850-1914 95
12. Diagram showing normal and reverse or overthrust faults 100
13. Diagrammatic structure section of the Wasatch Range, in Ogden Canyon 100
14. Cross section of Marsh Creek valley at McCammon, Idaho. 120
15. The Three Tetons, looking east 142
16. Diagrammatic cross section showing the geologic structure of the Virginia Range in its relation to Truckee Meadows 188
17. Sketch maps showing capture of upper part of Bear River by South Fork of Yuba River (on sheet 23) 214
18. Diagram showing the present relation of the Tertiary auriferous gravels to bedrock and lavas. 208
19. Map showing geologic formations along the south shore of San Pablo Bay (on sheet 25) 224
20. Section showing structure along the south shore of San Pablo Bay (on sheet 25) 224

\section*{INDEI OF RAILROAD STATIONS.}

\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{Page. Sheet.} \\
\hline Rocklin, Cal. & 214 & 23 \\
\hline Rodeo, Cal. & 220 & 25 \\
\hline Rogers, Nebr. & & 2 \\
\hline Roscoe, Nebr. & & 6 \\
\hline Rose Creck, Ner & 175 & 20 \\
\hline Roseville, Cal. & 215 & 23 \\
\hline Rosny, Nev. & & 19 \\
\hline Rye Patch, Nev. & 177 & 20 \\
\hline Ryndon, Nev.. & & 18 \\
\hline \multicolumn{3}{|c|}{S.} \\
\hline Sacramento, Cal. & 215 & 24 \\
\hline St.Anthony, Idaho. & 140 & 15D \\
\hline St. Leon, Idaho. & 135 & \\
\hline Saline, Utah.. & & 15 \\
\hline Salt Lake Citry, Čtah. & 93 & 15 \\
\hline Salt Wells, W yo. & & 12 \\
\hline Sampo, Wyo. & & 10 \\
\hline San Francisco, Cal. & 224 & 25 \\
\hline San Pablo, Cal. & 221 & 25 \\
\hline Sarpy, Nebr. & & 1 \\
\hline Satanka, Wyo. & & 9 \\
\hline Schuyler, Nebr. & 19 & 2 \\
\hline Seymour, Nebr. & & 1 \\
\hline Shelley, Idaho.. & 133 & 15 C \\
\hline Shelton, Nelr. & 26 & 3 \\
\hline Sherman, W yo. & 44 & 9 \\
\hline Sidney, Nebr. & 34 & 7 \\
\hline Silver Creek, Nelr. & 23 & 2 \\
\hline Smart, Cal.... & 205 & \\
\hline Smeed, Nebr. & 35 & 8 \\
\hline Sobrante, Cal. & 221 & \\
\hline Soda Springs, Cal. & 203 & 23 \\
\hline Solon, W yo. & & 11 \\
\hline Sparks, Nev. & 158 & 22 \\
\hline Spring Valley, W yo & 79 & 14 \\
\hline Spruce, Cal. & & 23 \\
\hline Stonehouse, Ner. & 171 & 19 \\
\hline Strawberry, Ctah. & 90 & 15 \\
\hline Steamboat Springs, Ne & 191 & 22 \\
\hline Strong Knob, \({ }^{\text {ctah. }}\) & & 16 \\
\hline Sugar City, Idaho. & 139 & 15D \\
\hline Suisun, Cal.. & 217 & 24 \\
\hline Summit, Cal. & 201 & 22 \\
\hline Sunol, Nebr. & 33 & 7 \\
\hline Sutherland, Nehr. & 30 & 5 \\
\hline Swan Lake, Idaho. & 116 & 15B \\
\hline Swingle, Cal. . & 216 & \\
\hline \multicolumn{3}{|c|}{T.} \\
\hline Table Rock, Wyo. & 68 & 12 \\
\hline Tamarack, Cal. & & 23 \\
\hline Teck, Utah. & 155 & 16 \\
\hline Tecoma, Ner. & 158 & 17 \\
\hline Thayer Junction, Wyo & 70 & 12 \\
\hline Thisbe, Ner.. & & 22 \\
\hline Thornton, Idalıo. & 138 & 15 C \\
\hline Thummel, Nelor. & 23 & 3 \\
\hline Tioga, Ner.. & 159 & 17 \\
\hline Tipton, Wyo. & 67 & 12 \\
\hline Tolin, Cal... & 226 & 25 \\
\hline Tonka, Ner. & 167 & 18 \\
\hline Tormey, Cal. & 220 & \\
\hline Touton, Ner. & 181 & 21 \\
\hline Towle, Cal.. & 207 & 23 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{Page. Sheet.} \\
\hline Toy, Nev & 181 & 21 \\
\hline Tracy, Wyo. & 37 & 8 \\
\hline Trenton, Utah. & 113 & 15A \\
\hline Truckee, Cal. & 197 & 22 \\
\hline Trude, Idaho. & 145 & 15D \\
\hline Tulasco, Ner. & & 18 \\
\hline Tule, Ner. & 173 & 20 \\
\hline Twin Grove, Idaho. & 141 & \\
\hline Tyhee, Idaho. & 125 & 15 C \\
\hline Tyrol, Ner. & 167 & 18 \\
\hline \multicolumn{3}{|c|}{U.} \\
\hline Uecz, Idaho.. & 135 & 15C \\
\hline Uinta, Utah. & 92 & 15 \\
\hline Ullin, Ner.. & 159 & 17 \\
\hline Umbria Junction, U'tah & 155 & 17 \\
\hline Union Mill, Cal.. & 197 & \\
\hline Upsal, Ner & & 21 \\
\hline \multicolumn{3}{|c|}{V.} \\
\hline Valery, Ner. & 177 & 20 \\
\hline Vallejo Junction, Cal. & 219 & 25 \\
\hline Valley, Nebr. & 16 & 1 \\
\hline Valler Pass, Ne & 161 & 17 \\
\hline Valmy, Ner. & 171 & 19 \\
\hline Verdi, Ner. & 193 & 22 \\
\hline Verne, Wyo & & 13 \\
\hline Virginia, Idaho. & 119 & 15B \\
\hline Virginia City, Nev & 159 & 22 \\
\hline Vista, Ner. & 185 & 22 \\
\hline Vivian, Ner. & 167 & 18 \\
\hline Vroman, Nehr. & 29 & 5 \\
\hline \multicolumn{3}{|c|}{W.} \\
\hline Wahsatch, Utah & 84 & 14 \\
\hline Walcott, Wyo. & 60 & 10 \\
\hline Wamsutter, W5o. & 67 & 11 \\
\hline Wapello, Idaho.. & 131 & 15 C \\
\hline Warm River, Idaho. & 143 & 15D \\
\hline Washington, Cal. & & 24 \\
\hline Waterloo, Nehr. & 16 & 1 \\
\hline Weir, Colo.. & 33 & 6 \\
\hline Wells, Ner. & 162 & 17 \\
\hline West Welner, CTah & 149 & 15 \\
\hline Weston, 1daho. & 115 & 15 A \\
\hline Wheelon, \({ }^{\text {Cotah. }}\) & 111 & 15.1 \\
\hline White Plains, Nev & & 21 \\
\hline Wilcos, Wyo. & & 10 \\
\hline Wilford, Idaho. & 139 & 15 D \\
\hline Willard, \({ }^{\text {ctah. }}\) & 106 & 15. \\
\hline Willow Island, Nebr. & 28 & 4 \\
\hline Winder, Idaho. & 138 & 15 C \\
\hline Winnemucea, Nev & 174 & 20 \\
\hline Wirt, Cal.... & 203 & \\
\hline Wood River, Nelr. & 25 & 3 \\
\hline Woolser, Ner. & 179 & 21 \\
\hline Wroming, Wyo & 45 & 9 \\
\hline Wyuta, U'tah. & & 14 \\
\hline \multicolumn{3}{|c|}{\(Y\) \%} \\
\hline Yellowstone, Mont . & 147 & 15D \\
\hline Yuha Pass, Cal. . & 205 & \\
\hline \multicolumn{3}{|c|}{Z.} \\
\hline Zenda, Idaho. & 117 & \\
\hline Zola, Nev. & 175 & 20 \\
\hline
\end{tabular}

Tracy, Wyo................................. 37 8
Trenton, Utah............................... 113 15A
Truckee, Cal.................................. 197 22
Trude, Idaho................................... 145 15D
Tulasco, Nev................................... 18
Tule, Ner....................................... 173 . 20
Twin Grove, Idaho........................... 141
Tyhee, Idaho................................. 125 15C
Tyrol, Ner..................................... 167 18

Uec:, Idaho.. 135 15C
Uinta, Utah................................... 9215
Unin, Aer.. 17
Union Mill, Cal............................... 197
Upsal, Ner...................................... 21
Y.

Valery, Ner.................................. 17720
jo Junction, Cal

Valler Pass, Ner.............................. 161 17
Valmy, Nev................................... 171 19
Verdi, Ner..................................... 19322
Verne, Wyo................................... 13

Vista, Ner...................................... 18822
Vivian, Ner..................................... 167 18
Vroman, Nelr............................... 29 5

Wahsatch, Utah........................... 84 . 14
Walcott, Wyo................................ 60 . 10
msutter, II ro... \(61-11\)
Warm River, Idaho 143 15D
Wash
Waterloo, Nehr...................................... 161
Weir, Colo.................................... 33 . 6
Wells, Ner.................................. . . 162 . 17
West Weler, Ctah........................... 149 . 15
Weston, ldaho............................... 115 15A
Wheelon, U'tah................................. 111 15.1
White Plains, Nev............................ 21
Wilcox, Wyo................................ 10

Willow Island, Nebr.......................... 28 . 4
Winder, Idaho............................... 138 15C
W'innemucea, Nev.......................... 17420
Wirt, Cal.................................... 203

Wroming, IV ro..............................
Wyuta, U'tah.................................... 1
Y.

Yellowstone, Mont........................... 147
15D

Zola, Ner.. . 1 is
20

\title{
GENERAL INDEX.
}

21-2.3
Aftonian interglacial stage, events of
Alcatraz Island, San Francisco Bay, Cal.,
U. S. disciplinary barracks on . 224, 227

Alden. W. C., on glaciation in eastern Nebraska.

21-24
Alexis, Grand Duke of Russia, buffalo hunt for

28
Alkali, black and white, nature of............ 153
Allanite, occurrence of, at Albany, Wr yo..... 47
Allosaurus, description of....................... . . 53-54
plate shówing. 52
Almond group, coal of, quality of............ 69
American River, North Fork of, Cal., plate
showing.................................. 207
Ames, Oliver and Oakes, monument to, at
Sherman, Wyo......................... 44
Ammonia, distillation of, from rock of Fish Cut, Wyo

74
Angel Island, San Francisco Bay, Cal., U. S. stations on

224
Animals, extinct, kinds of............. \&-11,22, 173
extinct, plates showing. \(10,21,27,34,39-40,40,41\)
Ankylosaurus, description of................. 50
Antimony, deposits of, near Lovelock.
Nev............................... . . \(179-180\)
Arikaree formation, description of............ 37,38
plate showing. 40
Armadillos, extinct, few remnants of......... 11
extinct, plate showing........................ 10
Aspen formation, oil in is
Aspen Ridge, Wyo., faulting near............. 77-78
Aspen Tunnel, Wyo., construction of......... 77-78
Astor, John Jacob, plan of, for trading posts. 17-1S
Astor expedition, adventures of.............. 136
Austin, Nev., ore deposits near................ 170
Axolotl, where found.
55

\section*{B.}

Bancroft, H. H., on early emigration to Cali-
fornia. 200
Basalt, columnar, occurrence of, near McCam-
mon, Idaho........................121-122
Batholith, definition of............................ 204
Bear River, Cal., capture of upper part of, sketch maps showing.

214
power plants on............................... 203
Bear River, Utab, course of...................... 110
discharge of.. 114
power from.. 110
"The Gates" of, plate showing.......... 112
Bear River, Wyo., course and flow of........ so
Bear River canyon, Utah, scenery of........ 111
Bear River formation, nature of............... so
Bear River Range, Utah, rocks of............ ss-s 9

A.

Page.

Page.

Bearer pond near Mesa, Idaho, view of,..... 11.,
Beckwith formation, nature of................ \(\quad 79\)
Beekeeping in northern Utah................. 113
in southern Idaho. 13.
Beets, sugar, srowing of, in Nebraska........ 24
sugar, growing of, in northern ['tah... 109, 113
Ben Lomond, L'tah, view of. 150
Bent on formation, character of................ 49
Benton shale, deposition of...................... 19
Bentonite, bed of, near lied Buttes, Wyo.... 46
Berkeley Ilills, Cal., situation and geology of. 222
Bis Butte, Idaho, views of.............. 123, 129, 133
Bingham Canyon, Ltah, copper deposits of. 93
Birds, wild, in northern C"tah. 105, 107
wild, in southern Idaho..................... 126
Birdseye, C. H., work of.......................... 4
Bismuth, occurrence of, in Jelm Mountain, Wyo................................... \(\quad 47\)
Bison, plate showing................................. 11
prevalence of, in prehisteric time......... 11
Bitter Creek, W'yo., cutting of channel by... 72
Black Butte, W yo., situation of............... 67
Blackfoot River, Idaho, discharge of, at

Presto....................................... 130
history of . 131-132
Black Ilills. Sєe Laramie Range.
Blow-outs, formation of......................... 33
Blue Canyon, Cal., plate showing............ 207
Bonneville terrace. St Lake Bonneville.
Bowlders, quartz, use of.......................... 207
Bridger, James, career of.......................... 77
Brigham Young College, Logan, Utah, situa-
tion of. 113
Brontosaurus, description of................... 52
Brown-fly larva, railroad tracks made slip-
pery by . \(\quad 153\)
Buffalo skull used as tablet..................... 33
Burbank, Luther, home of...................... 219
C.

Cachuc Valley, C'tah, structure of............. 112
Calaveras skull, orisin of.......................... 209
California, emigration to, in \(1546 . \ldots \ldots . .\).
geography and products of.............. 191-195
University ef, description of................ 223
California Hill, Nebr., fork of Overland Trail
at... 31-32
Calvin, Prof. Samuel, on extinct American mammals

22-23
Camlirian quartzite resting on Archean gneiss near Willard, Utah, plate show-
ing.
105
Camels, prevalence of, in prehistoric time.... 11, 27
Cape 11 orn, Cal., railroad curve aronnd...... 210
Carloniferous forest, plate showing........... 20
Page.
Carey, Senator, irrization 49
4,191
Carson lesert, Nev., plate showing. \(1 \times 2\)
situation of 14
Carson Range, Nev., timber on 193
Castle Rock, near Green River City, Wyo., plate showing 73
Cattle, fattening of, in Nelraska 21
herd of, , late showing 11
shipments of, from Ogalalla, Nebr. 30
Cedar, incense, description of 202
Cement, plant making, at Bakers, Ǔtah. 108
plant making, near leevils Stide, Utah..
160-161
Cherry ('reek mine, Nev., production of.
30
Chief Spotted Tail, 10,000 followers of
28
Chief Turkey Leg, depredations of 28
Chimney Rock, Nebr., situation of 35
Coal, scarcity of, in Ne? raska 16
Coast Ranges, Cal., description of 216
Cobalt, deposit of, near Lovelock, Nev 140
Colorado River, canyon of, exploration of 73
Columnar structure, production of 121
Como Bluff, W yo., fossils of dinosaurs from. 52-54
Comstock lode, Ner., description of 190
Continental Divide, crossing of 147
Contra Costa Hills, Cal., situation and geology of. 222
Copper smelters at Garfield, Utah, vjew of. 151
Corn, field of, plate showing 11
Council Blutis, lowa, first Union Pacific Rail- road bridge at 12
present Union Paeific Railroad liridge at 12
Creighton, Edward, telegraph line of 18
Creodont, plate showing 80
Crook, Gen. George 11., gap, creek, and moun- tain named for 64
Cutoff Lake, Nelr., an alrandoned river chan- nel 12
D.
Dakota sandstone, depth of, near Grand Is- land, Neir 25
Dale Creek, Wro., great fill on 45
Daughters of the American Revolution, mark- ing of Overland Trail by 18
Deer, prevalence of, in prehistoric time 11
Desolation Valley, Cal., plate showing. 201
Devils Slide, near Ilenefer, L'tah, description of. 88
1) late showing. 87
Diatomaceous earth, nature of 192-193
Dinosanrs, descriptions of. 52-51, 54-59
ptates showing 52, 53
Diplorloens, size of 52
Dodge, Gen. Grenville M., on the former prevalence of the bison 25
on the history of Juleshurg, Colo. 32
on the story of the \(O\) verland Trail. 17,18
Donner Lake, ('al., description of 201
plate showing 201
bonner party, monuments to. 199
story of 200

\section*{E.}
Earthtuakes, rifts and ridges produced by. 22s-229 Fast Butto, Itaho, phates showing............. 112 views of 129, 133
Page.
Echo, Utah, pulpit rock at, plate showing. 85
Echo Canyon, Utalh, north wall of, plate show- ing. 85
scenery in 85
steamboat rock in, phate showing 81
the Narrows in, plate showing 84
Eckley, Cal., situation of 219
Egan Canyon mine, Nev., production of... 160-161
Elephant, Columbian, phate showing 10
Columinian, size of 10
imperial, descrintion of 10
plate showins 40
Elk Mountain, W゙yo., plate showinr 60
Elko, Nev., hot springs near 166
hot springs near, plate showing. 176
Ely copper district, Nev., ore deposits of. 160
Encampment, W゙yo., mines at 60
Eohasilens, plate showing 80
Erosion, extent of, in the United States 13
Eucalyptus, description of 203
Eureka mining district, Ner., geology and ore deposits of 168
Evans, John, town founded by 81
Evanston, Wyo., geologic features north of, plate showing 81
hill northwest of, plate showing 8I
Evanston formation, nature of. 81
F.
Fallon, Nev., situation of. 183
Fall River, Idaho, discharge of, 12 miles above railroad fridge 141
Fault scarp, recent, at the mouth of Ogden Canyon, Ut tah, plate showing.... 100
Faults in Ogden Canyon, Itah, formation of. 99-101
Ferris, George, features named for 63
Fir, red, description of. 202
white, description of 202
Fish, fossil, abundance of, near Green River, Wyo. 74
fossil, plate showing 75
Fish Cut, Wyo., plate showing 74
Flowers, wild. 48-49
Folds in Ogden Canyon, Ctah, description of. 102, 103
plate showing 100
Forebay, Cal., railroad cut near, plate show- ing. 206
Formations exposed in western Wy yoming and eastern U'tah, suecession of 75
Fort IIall Reservation, Idaho, Indian inhab- itants of 127
Fort Kearney, Nebr., site of 26
Fort laussell, Wyo., situation of 38
Francisean rocks, nature of 221
Fremont, John C., exploration by 18
Frontier Days Celebration, features of 38
6.
Garfield, titah, copper smelters at 151
Garland, Wiltiam, town named for 110
Geologic terms, glossary of 232-236
Geologic time, divisions of, chart showing....Geology of the region traversed by the Over-land Rorte, publications on... 230-231
Giant, Cal., powder factory at 221
Gibraltar Cone, Wyo., blasting of. 45
－Page．
Hercules，Cal．，powder works at 220
Hesperomis，skeletom of head of，plate show－ ing． 21
1loge，prevalence of，in prehistoric time 11
giant，deseription of （1）
plate showing 11
Hollal：yy，Ben，stage line of 1
Ilorses，ancient three－towl，prevalenee of 27， 16
extinct，specips of 10
Horseshoe（reek coal district，Ihaho，Mar－ arter of． 14.
Ilumboldt formation，nature of． 159
Humbold Lake，Nev．，description of．．．．．．VトにばHumboht Monntains，Nev．，snow on，plateshowing\(1 i t\)
IIumboldt River，Nev．，channel of，near Rye Patch，plate showing 171
course of \(16: 3\)
cutting of channel by． 173
Inunsacker，Abrahan，home of 110.
Hunter Point，San Francisco，Cal．，access to．． 227
11 yalraulic mining，traces of \(207-203\)
I．
Itaho，geograply of 111－115
southern，general features of route in．． 10：3－101
Idaho State fish hatchery，description of 145
Independence Valley，Ner．，view of Hit
Indian cemeteries，mode of marking 12
Inoccramus labiatus，plate showing． 20
Iron ore，deposit of，at Barth，Nev． 169
Irrigation，practice of \(10 \div 109\)
Irving，Washington，mention of Three Tetons by． 136
Isles of refuge，fossils from 37
J．
Jail Rock，Nebr．，plate showing 41
situation of 35
Jensen，Andrew，acknowledgment to \(\checkmark 5\)
Jessup mining district，Nev．，situation of 192
Juniper，western，description of 202

\section*{k．}
Kansan stage of glaciation，southern limit of Keewatinglacier in 23
Kearney，Nebr．，State Normal School al view of 27
Keewatin glacier，area covered be 21
extent of，in the Wisconsin stage 23
Kemed，Nev．，hoom and decline of 175
Kohb，Ellsworth and Emery，canyon of the Colorado photographed by 73

\section*{L．}
La Ramie．Jactues，river and fort named for 17
Lajennesse，Seminoe，career of． 62
Lake Bonneville，CVtali－Itaho，beach formed
いと。 90， 92.110
history of． 9t－99
shore of，plate showing 105
Lake Lahontan，Nev．－Cal．－Oreg．，beaches of． 177
descrintion of． \(1 \%\)
take Tahne，Cal．－Nev．，access to 197
Cave Rock on，plate showing 2100
description of 195－199
plate showing 197
Page.
Lake Yan Norden, Cal., situation of 203
Lane cut-our, Nebr., description of 14
Laramic, Wyo., springs near 46
Laramie Basin, W yo., description of 45
Laramie Mountains, W yo., approach to, how discovered 43
view of 37
Lava Hot Springs, Idaho, natatorium at 121
Leete, Nev., situation of 185
Leucite, occurrence of, near Thayer Junction, W゙yo. 70
Levees along Sacramento and American rivers, Cal 215-216
Lewis, J. L., work of 4
Lincoln Highway, route of. 32
Lamas, prevalence of, in prehistoric time. 11,27
Loess, nature of 8, 16
Longs Peak, Colo., view of. 39
Louderback, G. II., information supplied by. 4
Lucin cut-off, C-tah, benefits from 149
plate showing 152
Lucin mining district, Nev., ore deposits of. 158
M.
Mammoth, Siberian, description of 9-10
Mansfield, G. R., on phosphate deposits of the western Cnited States 127-129
Manzanita, description of. 211
Market Lake Craters, Idaho, description of. 137-138
Marsh Creek valley, Idaho, history of. 118
lava flow in 119
Martinez, Cal., situation of 218
Mastodon, American, description of 9
Miocene, plate showing. 40
prevalence of27
Merriam, Prof. J. C., information supplied by. 4
Mesa Mountain, Wyo., view of 42
Mesaverde formation, coal-bearing sandstone of, plate showing 67
Midas, Cal., railroad cut near, plate showing. 206
Middle Butte, Idaho, views of 129, 133
Mill Valley, Cal., situation of 227
Miller, Joaquin, home of 223
Missouri River, flood deposits of 11, 13
shifting channel of. 11-12
Monuments, natural, eroded from Casper sandstone, plate showing 45
near Echo, Utah, description of 85
near Green River City, Wyo., plate showing. 73
Moon, C. H., St. Anthony, Idaho, founded by 140
Mormon trail, reasons for making. 87
Mormons, increase of 93
Moropus, description of 34
plate showing 40
"Mortar beds," nature of. 30,34
Mosasaur, restoration of, plate showing. 21
Moss Beach, Cal., situation of 227
Mother Lode, Cal., description of 210
Mountain Copper Co., sulphur fumes utilized by.. 218
Mount Diablo, Cal., altitude of 227
description of. 217
views of 213, 217
Mount Hamilton, Cal., altitude of 227
Page.
Mount Rose, Cal., altitude of 198
Mount Tamalpais, Cal., access to 227
Mount Whitney, Cal., altitude of 198
Muir, John, home of 218
Muir Woods, Cal., description of. 228
Musk ox, plate showing 10
Mussel Rock, Cal., situation of. 226
N.
National mining district, Nev., ore deposits of. 174
Nebraska, eastern, artesian water in 15, 17
eastern, rocks exposed in 15, 17
geography and products of 13
plains of, plate showing. 11
Nevada, geography and mining industry of. 156-157geology of.157-158
Nevada City, Cal., mining district, descrip-tion of.211
Nevada State University, situation of. 190
Nickel, deposit of, near Lovelock, Nev 180
Niobrara formation, position and character
of................................ 19-20, 23
Niter, small deposits of, near Lovelock, Nev.. 180
North, Maj. Frank J., defense of Overland Route by 26
North Platte River, Colo.-Wyo.-Nebr., course of 61
plate showing 60
North Putnam Mountain, Idaho, view of 128
Nye. Bill, home of 47
railway guide of 47
O.
Oak, blue, description of 203
coast live, description of 203
interior live, description of 203
valley, description of 203
Observation Peak, Utah, view of 90,150
Ogallalla formation, distribution and char- acter of. 30-31
Ogden Canyon, Utah, cutting of. 102
description of. 100-103
plate showing 101
Ogden Hole, Utah, relation of, to Lake Bonneville. 103
Oil, distillation of, from rock of Fish Cut, Wyo 74
Olinghouse mining district, Nev., ore de- posits of 186
Orcana, Nev., early silver-lead smclting at... 178
Orcgon Trail, early travel on 17, 18,24
Overland Route, general character of 5-6
Overland Trail, fork of, at California Hill, Nebr 31
history of. 17-18
marking of 17-18
route of, from Great Salt Lake, Utah, to Wells, Nev 162
Oysters, fossil, plate showing 20
P.
Palisade Canyon, Nev., plate showing 153
Paper pulp, making of, at Floriston, Cal 195
Park City mining district, Utah, access to 93
ore deposits and production of 86
I'age.
Parkman, Francis, on the taming of the wildwest.104
Pathfinder dam, Wyo., height of 61
Pea cannery at Morgan, L'tah, output of 89
Peach Day, cclebration of, at Brigham, Ttah. 118
rescadero, Cal., situation of 29
I'hosphate rock, deposits of, in the Fort Hall Indian Rescrvation, Idaho. 127
deposits of, in the western Cnited States. 127-129occurrence of, in Ogden Canyon, I'tah... 1/12
Piedmont, Cal., situation of1
Pilot Peak, U゙tah, view of. 158,159
Pine, digger, description of 203
Jeffrey, description of 202
sugar, description of 202
tamrac, description of 202
whitebark, description of 202
yellow, description of 202
Piute Indians at home, plate showing 143
Platte River, discharge of 21
old ralley of I
view of. 16
Plaras, nature of 1.5
Point of Rocks, Wry., coal mined at 69,70
north wall of canyon near, plate showing. 66
Portneuf River, Idaho, flow of. 121
Potash, occurrence of, near Thayer Junction, W yo 70
Potrero Hills, Cal., situation of 221
view of. 217
Powell, Major J. W., portrait of 72
Power plants, hydroelectric, in California, fea- tures of. 203
Precipitation in the Sierra Nevada 201-202
Procamelus, description of 3.
plate showing. 40
Protoceras, description of. 40
plate showing 41
Provo terrace, formation of 92
view of. 110
Pterodactyls, description of 20
plate showing. 21
Purpose of this guidebook. 3
Q.
Quicksilver, occurrence of 176
R.
Ragtown, Nev., soda lakes near 1,4
Ramsay, Nev., situation of. 157
Rawhide, Nev., access to 151
Rawlins, Gen. J. d., spring named for fi4
Rawlins, Wyo., gap in Cambrian quartzite near, plate showing 61
water west of, quality of. 69
Red Desert, Wyo., description of 66-67
plate showing 61
Red Rock Pass, Utah, outlet to Lake Bonne- ville at \(97-94\)
outlet to Lake Bonneville at, plate show- ing. 113
Redwood Peak, Cal., situation of 223
Reed, W. II., collections of dinosaur remains by. 52
Reno, Gen. Jesse Lee, city named for 191
Rhinoceros, extinct American, plate showing. 41
Page.
Ricks, Thomas, town named for 139
Riley, James Whitcomb, railway guide of. 47
Robinson Creek, discharge of, near Warm River, Idaho 141
Rochester, Nev., ore deposits of. \(1 / 4\)
Kock springs coal field, Wro., mines in 71, 71
origin and evtent of (i>
ruality of coal in. 70
Rock springs dome, Wyo., form and extent of 70
Kosebud mining district, Nev., situation of. 17
Ruby liange, Nev., description of I6;3-164
Russell, 1. C., on the snake River bla 15
Sacramento, Cal., state capitol at, plate showing 216
Sagebrush, growth of 125
St. Mary Peak, Wyo., situation of. 60
Salamanders, where found. 55
Salt, making of, on the shore of freat Salt Lake, U゙tah 149
Salt brine, bacillus living in 1.1
San Francisco Bar, Cal., formation of. 224
San Mateo, Cal., situation of 227
San Pablo Bay, Cal., south shore of, geologic map of. sheet 25
south shore of, structure section along. .. 219
220, sheet 2.5
Sand dunes, area of, in Nebraska 25
area of, near Winnemucca, Nev. 174
traveling of 66
Santa Cruz, Cal., situation of. 227
Saratoga, W yo., mineral waters of. 60
Sausalito, Cal., situation of 227
Sauttelle Peak, Idaho, situation of 146
Scheelite, deposit of, near Miriam, Nev. \(1 \times 1\)
Scott, W. B., on extinct Imerican mammals 9-11
Sea, ancient, in Nebraska 19,20
Seed, growing of, at Idaho Falls, Idaho 134
growing of, at St. Inthony, Idaho 140
near Valley, Nebr 16
Seven Troughs mining district, Nev., ore de- posits of 179
Sheep, herding of 66
Sheep raising, fortunes in. 65
Shells, beach deposit of, near Huxley, Nev. 142
mound of, at Oakland, Cal., origin of.. 223
Sherman grauite, description of. 43
use of for railroad ballast. 43-44
weathered. plate showing 44
Sierra Nevada. forest trees of. 202-203
how formed 205-206
structure of. 12s-191
surface deposits forming west side of, plate showing 206
Silver Peak, Nev., access to 1) 4
Sinks, railroad, in the Suisun Flats, Cal.... 217-218
railroad, on the Lucin cut-off, Utah..... 150 150
Skinner's ranch, Point Reyes, Cal., traces of earthquakes at
Skinner s ranch, Point Reyes, Cal., traces of 229
Slade, J. .., career of 33
haunt of. 43
Sloths, extinet, descriptions of. 11
extinct, prevalence of. 27

Page.
Smith, George Otis, preface by................ \(3-4\)
Snake River, Idaho, course of................... 131 discharge of, at Blackfoot, Idaho. at Heise Hot Springs. Idaho. 130
137
irrigation projects on 132
Snake River plain, geology of 124-125
plants and animals of 125-126
Snow sheds, extent of, in the Sierra Nevada 201
telescoping sections of 204
watch for fires in 204
Soda lakes near Laramie. W yo., deseription of \(\mathbf{4 6 , 4 9}\)plate showing44
South Putnam Mountain, Idaho, view of.... 12s
Sparks, Gov. John, city named for 158
Spaulding, Rev. Il. II., and wife, missionary post of.. 126-127
Sperrylite, occurrence of, near Jelm Moun- tain, W yo 47
Spring Valley, Cal., traces of eartlıquakes at 229
Star City, Nev., boom and decline of 175
Star Peak Range, Nev., geology of. 176
Steamboat Springs, Nev., origin of ore de posits indicated by 191-192
Stegosaurus, description of 52-54
plate showing 52
Stream capture, example of 205
Stuart, Robert, overland journey of 24
Suisun Flats, Cal., description of 217-218
Sutro Baths, San Francisco, Cal., large pool of 22.5
Sutter, John Augustus, Sacramento, Cal., first settled by 215
Sutter's mill, near Coloma, Cal., golr discov- ered at 208
Sweet-gum tree, fossil leaf of, plate showing. 75
Syndyoceras, description of 34
plate showing 40

\section*{T.}
Table Rock near Bitter Creek, Wyo., plate showing 66
Tank farm at Krieger, Cal 221
Tapirs, ancient range of. 10
Teleoceras, description of 31
plate showing 40
Tertiary deposits, distribution and character of. 23-24
Teton City, Idaho, products of 139
Teton River, Idaho, discharge of, at the mouth of its canyon 139
Tetons, Three, Idaho, description of 142
views of 136, 141
Thornlurg, Major, expedition of 61,64
Thousand Oaks, Cal., situation of 222
Tiger, sal,er-toothed, an enemy of primitive man 11
saber-tootherl, plate showing 10
prevalence of 27
Tinker Kinol, Cal., view of 201
Tint ic mining district, Utah, access to. 93
Titanotheres, character of 39
plate showing 41
Toarl, hornerl, plate showing 53
Tolsin, C'al., situation of 226
Tonopah, Nev., access to 181
ore deposits at \(184-145\)
plate showing \(1 \backsim 1\)

Page.
Train, George Francis. on the proper place for the national capital.

20
Transportation, old and new, plate show- ing. 67
Triceratops, description of 58
plate showing. 53
Truckee, Cal., plate showing. 196
Truckee-Carson irrigation project, Ner., dam of, plate showing 186
description of 183-184, 185
Truchee Meadows, Nev., strusture of 188-190
Truckee River, Nev., ancient lake on 196
canyon of, plate showing 196
course of 150̃-186
Tule, growth of. 216
Tuscarora, Nev., silver production at 166
Tyrannosaurus, deseription of 59
C.
U'inta Range, Utah, structure of 90-91
Union Tacific Railroad, auction sale of 14
eastern terminus of 7
public need for building
175
Unionville, Nev., boom and decline of
U'nited States, western, relief map of 6
United States Reclamation Service dam on Truckee River, Nev., plate show- ing. 186
Utah, geography and products of 81-83
northern, general features of route in... 103-104
T'tah State Igricultural College, situation of. 113Ute Indians, antelope round-up of............ 67
V.
Vallejo, Cal, situation of 219
Vallejo, Gen. Nariano Guadalupe, town named for 219
Tallejo, Señora Benicia, town named for 218
Vigilance committee, work of 32
Virginia City, Nev., access to. 181
history of 190
plate showing 189
Virginia Range, Nev., structure of......... 188-191
Volcanic ash, beds of, near Red Buttes, Wyo. \(\$ 6\)
II.
Wadsworth, Nev., situation of 156
War bonnet round-up, description of 133
Warm River, discharge of, near Warm River, Idaho 14
Wasatch Range, Utah, geology of west front of, plate showing 104
structure of. 90, 99-100, 104
Water holes, control of 66-67
Waterfowl, Nevada lakes inhabited by 152
Weber River, Utan, cutting of channel by. 91
valley of, near Uinta, Utah. 92
plate showing 87
Weber River canyon, U'tah, power plant in. 91
Wedekind mining district, Nev., situation of 188
Well, deep, near IIuxley, Nev 182
West Ilumboldt Range, Nev., view of. 17
Wheat, production of, in California. 218
Wheat land irrigation project, Wro., manage- ment of. 49
Wheelon, John C., town named for 111
Whisky Gap, Wryo., view of 64

Page
Whitehorsemining district, Nev., ore deposits
of....................................... 1 vi
White Mountain, Wro., plates showing..... 67 67
White River group, fossils in 1.Whitman, Dr. Marcus, and wife, missionarypost of.126-127
Windbreaks, use of. 46, 65)
Wister, Owen, localit ies referred to ly, in TheVirginian
\(\qquad\)54, 141, 142, 143Witches, The, near Echo, I'tah, description of at;near Echo, I'tah, plates showing..... .. sti
Wolves, giant, plate showing 11
Wyoming, products and scenery of 36-37
L'niversity of, situation of 4
\(\gamma\).
Yerington, Nev., arcess 10. 144
ore deposits at \(1 \times 1\)
Suba River, Cal., power plants on 203

变跂

The publications of the United States Geological
Survey now comprise more than 1,300 titles. A
list can be obtained by applying to the Director,
U. S. Geological Suryey, Washington, D, C.

UC SOUTHERN REGIONAL LIBRARY FACILITY

AA 001106567
```

E
158
U58
v.2
cop,2

```
\({ }^{\text {chenc }}\)```

[^0]: ${ }^{1}$ Guidebook of the western United States: Part A, Northern Pacific Route, with a side trip to Yellowstone Park (Bulletin 611); Part B, Overland Route, with a side trip to Yellowstone Park (Bulletin 612) ; Part C, Santa Fe Route, with a side trip to Grand Canyon of the Colorado (Bulletin 613); Part I), Shasta Route and Coast Line (Bulletin 614).

[^1]: ${ }^{1}$ loess is a peouliar silt, rlaylike loam, or finc-grained samd, which strongly resists weathering. The name is supposed to be derived from the German word lösen (to loosen), becanse of the tendency of the material to split off in vertical columus. In color loess is generally buff or yellowish brown. It covers large areas in North America, where its beds were probably formed after the ice of the glacial period hard disappeared. Its mode of origin is not cortainly known. Some beds of it monist of material lifted bey the wind from the valleys where it had been deposited bey stremme Others probably were depositud in water along stream (onmes or in tomporary lakes. In plates it containsbones and trexh of amimals and shells of suails. If properly watered it makes gorol suil.
 ${ }^{2}$ The animals of the Pleistocene (plicer-loo-seent epoch (see table on 1 . 2) are inferesting becanse they are nearer to us in time than others of the past and therefore
 most nearly like some animals now living; ret those that lived in North America during this epoch were very different from those living here to-day. To find the descendants or near relatives of the Pleistocene animals of North America we must go fo other continents, for some of them as far away as India. The North Ameri(an animals were doubtless seattered by the changes in climate that resulted in the advances and retreats of the continental ice shect during the Great Ice Age.

 The fanna, or assemblage of animals, of early I'leistucene time was varied in charartor. The animals were adapted to the mild climate that then prevailed and remained until after the southward advance of the ice sheet, but were driven away or exterminated before the close of the ice aqe, and their place was taken by animals such as are now found only in the frozen areas of the North. When the ice melted away and a climate as mild as that of the present day was established, these

[^2]: 'Ther figures given for population throughout this booth are those of the Gnited states ('ensus for 1910. For unin--orporated places the census figures give the propulation of the election precinct, twwhishp, or whor simidar unit; such figures are marked with an asterisk (*).
 ${ }^{2}$ Tho material visible in these cuts is mainly loess and clay. In some places the glarial till umbler the clay is exposed, but the two can not bedistinguished from the train. In noarly all therents, hewever, the division befwern the luess and the clay is readily discennible. The upper

[^3]: ${ }^{1}$ The Benton shale lies conformably on the Dakota sandstone, that is, the heds of the Dakota were not affected hy erosion beiore those of the Benton were lairl down upon them. In Nebraska and some other areas a thin limestone (Greenhorn) near the middle of the Benton separates a lower shale (Graneros) from an upper shale (Carlile). The lowest beds crop out near Fremont, where the Dakota passes underneath it not to reappear at the surface again toward the west ior a distance of about 450 miles. It is a marine shale representing the first deposits formed after the sea invaded the interior of North America in the Upper Cretaceous eporh.
 ${ }^{2}$ The Niobrara limestone, so named beeanse of its good exposures on Niobrara

